IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v119y2017icp1010-1023.html
   My bibliography  Save this article

Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine

Author

Listed:
  • Broatch, Alberto
  • Olmeda, Pablo
  • García, Antonio
  • Salvador-Iborra, Josep
  • Warey, Alok

Abstract

One of the key strategies to reduce CO2 emissions is to improve the efficiency of engines in order to diminish fuel consumption. A way to increase engine efficiency is to reduce the heat losses. Internal heat transfer in engines depends on combustion chamber conditions. Swirl is an important parameter for combustion that also changes in-cylinder variables relevant to heat transfer. In this work, influence of swirl on combustion chamber heat fluxes was investigated employing wall temperature data and a 0-D thermal model. Local wall temperatures were measured at various locations of the cylinder liner and the cylinder head using thermocouples. A sweep of swirl ratios was carried out at different engine operating conditions. It was observed that the effect of swirl effect was highly dependent on location and was more important near the center of the firedeck. Results from the 0-D thermal model were evaluated by comparing measured and predicted wall temperatures. Using a convenient arrangement of thermocouples and the 0-D thermal model, it was possible to calculate heat flux from combustion chamber to cylinder walls. By analyzing heat flux through the firedeck, an increase in heat losses between 4 and 12% was observed for each unit that swirl number was increased. Results from the 0-D thermal model indicate that similar effects occur for other surfaces in the combustion chamber.

Suggested Citation

  • Broatch, Alberto & Olmeda, Pablo & García, Antonio & Salvador-Iborra, Josep & Warey, Alok, 2017. "Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine," Energy, Elsevier, vol. 119(C), pages 1010-1023.
  • Handle: RePEc:eee:energy:v:119:y:2017:i:c:p:1010-1023
    DOI: 10.1016/j.energy.2016.11.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216316450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Soid, S.N. & Zainal, Z.A., 2011. "Spray and combustion characterization for internal combustion engines using optical measuring techniques – A review," Energy, Elsevier, vol. 36(2), pages 724-741.
    2. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
    3. Knecht, Walter, 2008. "Diesel engine development in view of reduced emission standards," Energy, Elsevier, vol. 33(2), pages 264-271.
    4. Rakopoulos, C.D. & Mavropoulos, G.C., 2008. "Experimental evaluation of local instantaneous heat transfer characteristics in the combustion chamber of air-cooled direct injection diesel engine," Energy, Elsevier, vol. 33(7), pages 1084-1099.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Feng, Renhua & Li, Guanghua & Sun, Zhengwei & Hu, Xiulin & Deng, Banglin & Fu, Jianqin, 2023. "Potential of emission reduction of a turbo-charged non-road diesel engine without aftertreatment under multiple operating scenarios," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    2. Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
    3. Huang, Weidi & Wu, Zhijun & Gao, Ya & Zhang, Lin, 2015. "Effect of shock waves on the evolution of high-pressure fuel jets," Applied Energy, Elsevier, vol. 159(C), pages 442-448.
    4. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    5. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    6. José Javier López & Oscar A. de la Garza & Joaquín De la Morena & Simón Martínez-Martínez, 2021. "Influence of Cavitation in Common-Rail Diesel Nozzles on the Soot Formation Process through Measuring Soot Emissions," Energies, MDPI, vol. 14(19), pages 1-11, October.
    7. Torregrosa, A.J. & Broatch, A. & García, A. & Mónico, L.F., 2013. "Sensitivity of combustion noise and NOx and soot emissions to pilot injection in PCCI Diesel engines," Applied Energy, Elsevier, vol. 104(C), pages 149-157.
    8. Benajes, J. & Martín, J. & Novella, R. & Thein, K., 2016. "Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine," Applied Energy, Elsevier, vol. 161(C), pages 465-475.
    9. Ding, Hong-ming & Zhuo, Chang-fei & Deng, Han-yu & Li, Mao-quan & Chen, Xiong & Sun, Bo, 2023. "Experimental and numerical study on the development process and flow characteristics of powder fuel jet in the powder fuel scramjet," Energy, Elsevier, vol. 262(PA).
    10. Korakianitis, T. & Imran, S. & Chung, N. & Ali, Hassan & Emberson, D.R. & Crookes, R.J., 2015. "Combustion-response mapping procedure for internal-combustion engine emissions," Applied Energy, Elsevier, vol. 156(C), pages 149-158.
    11. Serrano, José Ramón & Olmeda, Pablo & Arnau, Francisco J. & Dombrovsky, Artem & Smith, Les, 2015. "Turbocharger heat transfer and mechanical losses influence in predicting engines performance by using one-dimensional simulation codes," Energy, Elsevier, vol. 86(C), pages 204-218.
    12. Usón, Alfonso Aranda & Capilla, Antonio Valero & Bribián, Ignacio Zabalza & Scarpellini, Sabina & Sastresa, Eva Llera, 2011. "Energy efficiency in transport and mobility from an eco-efficiency viewpoint," Energy, Elsevier, vol. 36(4), pages 1916-1923.
    13. Loganathan, S. & Leenus Jesu Martin, M. & Nagalingam, B. & Prabhu, L., 2018. "Heat release rate and performance simulation of DME fuelled diesel engine using oxygenate correction factor and load correction factor in double Wiebe function," Energy, Elsevier, vol. 150(C), pages 77-91.
    14. Oh, Jeongseog & Noh, Dongsoon, 2015. "Flame characteristics of a non-premixed oxy-fuel jet in a lab-scale furnace," Energy, Elsevier, vol. 81(C), pages 328-343.
    15. Ma, Xiao & Xu, Hongming & Jiang, Changzhao & Shuai, Shijin, 2014. "Ultra-high speed imaging and OH-LIF study of DMF and MF combustion in a DISI optical engine," Applied Energy, Elsevier, vol. 122(C), pages 247-260.
    16. Li, Yaopeng & Jia, Ming & Chang, Yachao & Kokjohn, Sage L. & Reitz, Rolf D., 2016. "Thermodynamic energy and exergy analysis of three different engine combustion regimes," Applied Energy, Elsevier, vol. 180(C), pages 849-858.
    17. Ma, Yu & Zhu, Mingming & Zhang, Dongke, 2014. "Effect of a homogeneous combustion catalyst on the characteristics of diesel soot emitted from a compression ignition engine," Applied Energy, Elsevier, vol. 113(C), pages 751-757.
    18. Mavropoulos, G.C., 2011. "Experimental study of the interactions between long and short-term unsteady heat transfer responses on the in-cylinder and exhaust manifold diesel engine surfaces," Applied Energy, Elsevier, vol. 88(3), pages 867-881, March.
    19. Payri, Raul & Gimeno, Jaime & Bardi, Michele & Plazas, Alejandro H., 2013. "Study liquid length penetration results obtained with a direct acting piezo electric injector," Applied Energy, Elsevier, vol. 106(C), pages 152-162.
    20. Rakopoulos, C.D. & Kosmadakis, G.M. & Pariotis, E.G., 2010. "Critical evaluation of current heat transfer models used in CFD in-cylinder engine simulations and establishment of a comprehensive wall-function formulation," Applied Energy, Elsevier, vol. 87(5), pages 1612-1630, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:119:y:2017:i:c:p:1010-1023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.