IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v66y2016icp834-842.html
   My bibliography  Save this article

Process Integration for Hybrid Power System supply planning and demand management – A review

Author

Listed:
  • Mohammad Rozali, Nor Erniza
  • Wan Alwi, Sharifah Rafidah
  • Manan, Zainuddin Abdul
  • Klemeš, Jiří Jaromír

Abstract

Modeling tools for the optimal Hybrid Power Systems (HPS) supply planning and demand management have been relatively established. However, complementary tools that can provide planners, decizion-makers, energy managers and electrical as well as power engineers with graphical and visualization insights that are vital for better conceptual understanding of the problems, particularly at the onset of hybrid power systems planning and design, have just been developed over the last five years. This paper reviews the six-year development of the insight-based graphical and algebraic Process Integration (PI) tools for the optimal HPS supply planning and demand management, i.e., from its inception in the year 2011, until 2016. Known as the Power Pinch Analysis (PoPA), the tool has been among the next-generation PI techniques for resource conservation following the developments of the heat, mass, water, gas, materials, property, solid and carbon emission pinch analysis techniques. This paper discusses the progress, challenges and contributions of PoPA in promoting Renewable Energy (RE) utilization in HPS. Case studies on implementation of PoPA for HPS planning and design presented in the paper show encouraging improvement on HPS profitability and reliability.

Suggested Citation

  • Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Process Integration for Hybrid Power System supply planning and demand management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 834-842.
  • Handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:834-842
    DOI: 10.1016/j.rser.2016.08.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116304798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.08.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wen Hui & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda & Lim, Jeng Shiun & Mohammad Rozali, Nor Erniza & Ho, Wai Shin, 2016. "Sizing of Hybrid Power System with varying current type using numerical probabilistic approach," Applied Energy, Elsevier, vol. 184(C), pages 1364-1373.
    2. Janghorban Esfahani, Iman & Yoo, ChangKyoo, 2016. "An optimization algorithm-based pinch analysis and GA for an off-grid batteryless photovoltaic-powered reverse osmosis desalination system," Renewable Energy, Elsevier, vol. 91(C), pages 233-248.
    3. Janghorban Esfahani, Iman & Lee, SeungChul & Yoo, ChangKyoo, 2015. "Extended-power pinch analysis (EPoPA) for integration of renewable energy systems with battery/hydrogen storages," Renewable Energy, Elsevier, vol. 80(C), pages 1-14.
    4. Chen, Cheng-Liang & Lai, Chieh-Ting & Lee, Jui-Yuan, 2014. "Transshipment model-based MILP (mixed-integer linear programming) formulation for targeting and design of hybrid power systems," Energy, Elsevier, vol. 65(C), pages 550-559.
    5. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2015. "Peak-off-peak load shifting for hybrid power systems based on Power Pinch Analysis," Energy, Elsevier, vol. 90(P1), pages 128-136.
    6. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Hassan, Mohammad Yusri, 2013. "Process integration of hybrid power systems with energy losses considerations," Energy, Elsevier, vol. 55(C), pages 38-45.
    7. Theo, Wai Lip & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Abdul-Manan, Zainuddin, 2016. "An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park," Energy, Elsevier, vol. 116(P2), pages 1423-1441.
    8. Ho, W.S. & Hashim, H. & Hassim, M.H. & Muis, Z.A. & Shamsuddin, N.L.M., 2012. "Design of distributed energy system through Electric System Cascade Analysis (ESCA)," Applied Energy, Elsevier, vol. 99(C), pages 309-315.
    9. Tan, Raymond R. & Foo, Dominic C.Y., 2007. "Pinch analysis approach to carbon-constrained energy sector planning," Energy, Elsevier, vol. 32(8), pages 1422-1429.
    10. Chen, Cheng-Liang & Lai, Chieh-Ting & Lee, Jui-Yuan, 2014. "Transshipment model-based linear programming formulation for targeting hybrid power systems with power loss considerations," Energy, Elsevier, vol. 75(C), pages 24-30.
    11. Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Abdul-Manan, Zainuddin & Klemeš, Jiří Jaromír, 2012. "A process integration targeting method for hybrid power systems," Energy, Elsevier, vol. 44(1), pages 6-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jui-Yuan & Aviso, Kathleen B. & Tan, Raymond R., 2019. "Multi-objective optimisation of hybrid power systems under uncertainties," Energy, Elsevier, vol. 175(C), pages 1271-1282.
    2. Yong, Wen Ni & Liew, Peng Yen & Woon, Kok Sin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2021. "A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Lopez, Neil Stephen A. & Foo, Dominic C.Y. & Tan, Raymond R., 2021. "Optimizing regional electricity trading with Carbon Emissions Pinch Analysis," Energy, Elsevier, vol. 237(C).
    4. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics," Energy, Elsevier, vol. 206(C).
    5. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Lai, Yee Qing & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul, 2020. "Graphical customisation of process and utility changes for heat exchanger network retrofit using individual stream temperature versus enthalpy plot," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Norbu, Sonam & Bandyopadhyay, Santanu, 2017. "Power Pinch Analysis for optimal sizing of renewable-based isolated system with uncertainties," Energy, Elsevier, vol. 135(C), pages 466-475.
    2. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    3. Theo, Wai Lip & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Abdul-Manan, Zainuddin, 2016. "An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park," Energy, Elsevier, vol. 116(P2), pages 1423-1441.
    4. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    5. Lee, Jui-Yuan & Aviso, Kathleen B. & Tan, Raymond R., 2019. "Multi-objective optimisation of hybrid power systems under uncertainties," Energy, Elsevier, vol. 175(C), pages 1271-1282.
    6. Li, Zhiwei & Jia, Xiaoping & Foo, Dominic C.Y. & Tan, Raymond R., 2016. "Minimizing carbon footprint using pinch analysis: The case of regional renewable electricity planning in China," Applied Energy, Elsevier, vol. 184(C), pages 1051-1062.
    7. Chen, Cheng-Liang & Lai, Chieh-Ting & Lee, Jui-Yuan, 2014. "Transshipment model-based linear programming formulation for targeting hybrid power systems with power loss considerations," Energy, Elsevier, vol. 75(C), pages 24-30.
    8. Liu, Wen Hui & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda & Lim, Jeng Shiun & Mohammad Rozali, Nor Erniza & Ho, Wai Shin, 2016. "Sizing of Hybrid Power System with varying current type using numerical probabilistic approach," Applied Energy, Elsevier, vol. 184(C), pages 1364-1373.
    9. Tayerani Charmchi, Amir Saman & Ifaei, Pouya & Yoo, ChangKyoo, 2021. "Smart supply-side management of optimal hydro reservoirs using the water/energy nexus concept: A hydropower pinch analysis," Applied Energy, Elsevier, vol. 281(C).
    10. Mohammad Rozali, Nor Erniza & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Klemeš, Jiří Jaromír, 2016. "Sensitivity analysis of hybrid power systems using Power Pinch Analysis considering Feed-in Tariff," Energy, Elsevier, vol. 116(P2), pages 1260-1268.
    11. Lee, Peoy Ying & Liew, Peng Yen & Walmsley, Timothy Gordon & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2020. "Total Site Heat and Power Integration for Locally Integrated Energy Sectors," Energy, Elsevier, vol. 204(C).
    12. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    13. Janghorban Esfahani, Iman & Ifaei, Pouya & Kim, Jinsoo & Yoo, ChangKyoo, 2016. "Design of Hybrid Renewable Energy Systems with Battery/Hydrogen storage considering practical power losses: A MEPoPA (Modified Extended-Power Pinch Analysis)," Energy, Elsevier, vol. 100(C), pages 40-50.
    14. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics," Energy, Elsevier, vol. 206(C).
    15. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2020. "A Numerical Pinch Analysis Methodology for Optimal Sizing of a Centralized Trigeneration System with Variable Energy Demands," Energies, MDPI, vol. 13(8), pages 1-35, April.
    16. Liu, Wen Hui & Ho, Wai Shin & Lee, Ming Yang & Hashim, Haslenda & Lim, Jeng Shiun & Klemeš, Jiří J. & Mah, Angel Xin Yee, 2019. "Development and optimization of an integrated energy network with centralized and decentralized energy systems using mathematical modelling approach," Energy, Elsevier, vol. 183(C), pages 617-629.
    17. Low, Elaine & Huang, Si-Min & Yang, Minlin & Show, Pau Loke & Law, Chung Lim, 2021. "Design of cascade analysis for renewable and waste heat recovery in a solar thermal regeneration unit of a liquid desiccant dehumidification system," Energy, Elsevier, vol. 235(C).
    18. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    19. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Giaouris, Damian & Papadopoulos, Athanasios I. & Seferlis, Panos & Voutetakis, Spyros & Papadopoulou, Simira, 2016. "Power grand composite curves shaping for adaptive energy management of hybrid microgrids," Renewable Energy, Elsevier, vol. 95(C), pages 433-448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:66:y:2016:i:c:p:834-842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.