IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v108y2016icp19-33.html
   My bibliography  Save this article

Impacts of carbon pricing, brown coal availability and gas cost on Czech energy system up to 2050

Author

Listed:
  • Rečka, L.
  • Ščasný, M.

Abstract

A dynamic partial equilibrium model, TIMES (​The Integrated MARKAL-EFOM System), is built to optimize the energy system in a post-transition European country, the Czech Republic. The impacts of overall nine scenarios on installed capacity, capital and fuel costs, air quality pollutant emission, emission of CO2 and environmental and health damage are quantified for a period up to 2050. These scenarios are built around three different price sets of the EUA (EU allowance) to emit greenhouse gasses alongside a policy that retains the ban on brown coal mining in two Czech mines, a policy that will allow the re-opening of mining areas under this ban (i.e. within the territorial ecological limits), and a low natural gas price assumption. We found that the use of up until now dominant brown coal will be significantly reduced in each scenario, although reopening the coal mines will result in its smaller decline. With low EUA price, hard coal will become the dominant fuel in electricity generation, while nuclear will overtake this position with a 51% or even 65% share assuming the central price of EUA, or high EUA price, respectively. The low price of natural gas will result in an increasing gas share from an almost zero share recently up to about 42%. This stimulus does not however appear at all with low EUA price. Neither of these scenarios will achieve the renewable energy sources 2030 targets and only a high EUA price will lead to almost full de-carbonization of the Czech power system, with fossil fuels representing only 16% of the energy mix. The low EUA price will result in an increase in CO2 emissions, whereas the high EUA price will reduce CO2 emission by at least 81% compared to the 2015 reference level. Those scenarios that will result in CO2 emission reduction will also generate ancillary benefits due to reduction in air quality emissions, on average over the entire period, at least at 38€ per t of avoided CO2, whereas scenarios that will lead to CO2 increase will generate ancillary costs at least of 31€ per t CO2.

Suggested Citation

  • Rečka, L. & Ščasný, M., 2016. "Impacts of carbon pricing, brown coal availability and gas cost on Czech energy system up to 2050," Energy, Elsevier, vol. 108(C), pages 19-33.
  • Handle: RePEc:eee:energy:v:108:y:2016:i:c:p:19-33
    DOI: 10.1016/j.energy.2015.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421501645X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosenberg, Eva & Lind, Arne & Espegren, Kari Aamodt, 2013. "The impact of future energy demand on renewable energy production – Case of Norway," Energy, Elsevier, vol. 61(C), pages 419-431.
    2. Hirst, Eric & Hild, Jeffrey, 2004. "The Value of Wind Energy as a Function of Wind Capacity," The Electricity Journal, Elsevier, vol. 17(6), pages 11-20, July.
    3. Timmerman, Jonas & Vandevelde, Lieven & Van Eetvelde, Greet, 2014. "Towards low carbon business park energy systems: Classification of techno-economic energy models," Energy, Elsevier, vol. 75(C), pages 68-80.
    4. Dowling, Paul, 2013. "The impact of climate change on the European energy system," Energy Policy, Elsevier, vol. 60(C), pages 406-417.
    5. Stocks, K. J., 1984. "Discount rate for technology assessment : An application to the energy sector," Energy Economics, Elsevier, vol. 6(3), pages 177-185, July.
    6. Luca Petricca & Per Ohlckers & Xuyuan Chen, 2013. "The Future of Energy Storage Systems," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    7. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    8. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    9. Gerbelová, Hana & Amorim, Filipa & Pina, André & Melo, Mário & Ioakimidis, Christos & Ferrão, Paulo, 2014. "Potential of CO2 (carbon dioxide) taxes as a policy measure towards low-carbon Portuguese electricity sector by 2050," Energy, Elsevier, vol. 69(C), pages 113-119.
    10. Merkel, Erik & Fehrenbach, Daniel & McKenna, Russell & Fichtner, Wolf, 2014. "Modelling decentralised heat supply: An application and methodological extension in TIMES," Energy, Elsevier, vol. 73(C), pages 592-605.
    11. Ueckerdt, Falko & Brecha, Robert & Luderer, Gunnar, 2015. "Analyzing major challenges of wind and solar variability in power systems," Renewable Energy, Elsevier, vol. 81(C), pages 1-10.
    12. Lohwasser, Richard & Madlener, Reinhard, 2012. "Economics of CCS for coal plants: Impact of investment costs and efficiency on market diffusion in Europe," Energy Economics, Elsevier, vol. 34(3), pages 850-863.
    13. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    14. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    15. A. Schröder & T. Traber & C. Kemfert, 2013. "Market Driven Power Plant Investment Perspectives In Europe: Climate Policy And Technology Scenarios Until 2050 In The Model Emelie-Esy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-22.
    16. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    17. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    18. Ščasný, Milan & Máca, Vojtěch & Melichar, Jan & Rečka, Lukáš, 2015. "Kvantifikace environmentálních a zdravotních dopadů (externích nákladů) z povrchové těžby hnědého uhlí v Severočeské hnědouhelné pánvi v těžebních lokalitách velkolomů Bílina a ČSA a využití vydobytéh," MPRA Paper 66600, University Library of Munich, Germany.
    19. McKenna, R. & Hollnaicher, S. & Ostman v. d. Leye, P. & Fichtner, W., 2015. "Cost-potentials for large onshore wind turbines in Europe," Energy, Elsevier, vol. 83(C), pages 217-229.
    20. Gracceva, Francesco & Zeniewski, Peter, 2013. "Exploring the uncertainty around potential shale gas development – A global energy system analysis based on TIAM (TIMES Integrated Assessment Model)," Energy, Elsevier, vol. 57(C), pages 443-457.
    21. van Wees, M.T & Uyterlinde, M.A & Maly, M, 2002. "Energy efficiency and renewable energy policy in the Czech Republic within the framework of accession to the European Union," Energy, Elsevier, vol. 27(11), pages 1057-1067.
    22. Urge-Vorsatz, Diana & Miladinova, Gergana & Paizs, Laszlo, 2006. "Energy in transition: From the iron curtain to the European Union," Energy Policy, Elsevier, vol. 34(15), pages 2279-2297, October.
    23. Kiula, Olga & Markandya, Anil & Ščasný, Milan & Menkyna Tsuchimoto, Fusako, 2014. "The Economic and Environmental Effects of Taxing Air Pollutants and CO2: Lessons from a Study of the Czech Republic," MPRA Paper 66599, University Library of Munich, Germany, revised Oct 2015.
    24. Blesl, Markus & Kober, Tom & Bruchof, David & Kuder, Ralf, 2010. "Effects of climate and energy policy related measures and targets on the future structure of the European energy system in 2020 and beyond," Energy Policy, Elsevier, vol. 38(10), pages 6278-6292, October.
    25. Jan Prusa & Andrea Klimesova & Karel Janda, 2013. "Consumer Loss in Czech Photovoltaic Power Plants," CAMA Working Papers 2013-50, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    26. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
    27. Průša, Jan & Klimešová, Andrea & Janda, Karel, 2013. "Consumer loss in Czech photovoltaic power plants in 2010–2011," Energy Policy, Elsevier, vol. 63(C), pages 747-755.
    28. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
    29. Vojtěch, Máca & Jan, Melichar & Milan, Ščasný, 2012. "Internalization of External Costs of Energy Generation in Central and Eastern European Countries," MPRA Paper 57988, University Library of Munich, Germany.
    30. Markandya, Anil & Pedroso-Galinato, Suzette & Streimikiene, Dalia, 2006. "Energy intensity in transition economies: Is there convergence towards the EU average?," Energy Economics, Elsevier, vol. 28(1), pages 121-145, January.
    31. Spiecker, Stephan & Weber, Christoph, 2014. "The future of the European electricity system and the impact of fluctuating renewable energy – A scenario analysis," Energy Policy, Elsevier, vol. 65(C), pages 185-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jilin Zhang & Yukun Xu, 2020. "Research on the Price Fluctuation and Risk Formation Mechanism of Carbon Emission Rights in China Based on a GARCH Model," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
    2. Olga Kiuila & Anil Markandya & Milan Ščasný, 2019. "Taxing air pollutants and carbon individually or jointly: results from a CGE model enriched by an emission abatement sector," Economic Systems Research, Taylor & Francis Journals, vol. 31(1), pages 21-43, January.
    3. Manzoor, Davood & Aryanpur, Vahid, 2017. "Power sector development in Iran: A retrospective optimization approach," Energy, Elsevier, vol. 140(P1), pages 330-339.
    4. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    5. Lehotský, Lukáš & Černoch, Filip & Osička, Jan & Ocelík, Petr, 2019. "When climate change is missing: Media discourse on coal mining in the Czech Republic," Energy Policy, Elsevier, vol. 129(C), pages 774-786.
    6. Karel Janda & Jan Málek & Lukáš Rečka, 2017. "Vliv obnovitelných zdrojů na českou soustavu přenosu elektřiny [The Impact of Renewable Energy Sources on the Czech Electricity Transmission System]," Politická ekonomie, Prague University of Economics and Business, vol. 2017(6), pages 728-750.
    7. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Di Leo, Senatro & Pietrapertosa, Filomena & Salvia, Monica & Cosmi, Carmelina, 2021. "Contribution of the Basilicata region to decarbonisation of the energy system: results of a scenario analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Jaskólski, Marcin, 2016. "Modelling long-term technological transition of Polish power system using MARKAL: Emission trade impact," Energy Policy, Elsevier, vol. 97(C), pages 365-377.
    10. Lukáš Rečka & Milan Ščasný, 2017. "Impacts of Reclassified Brown Coal Reserves on the Energy System and Deep Decarbonisation Target in the Czech Republic," Energies, MDPI, vol. 10(12), pages 1-27, November.
    11. Louis, Jean-Nicolas & Allard, Stéphane & Kotrotsou, Freideriki & Debusschere, Vincent, 2020. "A multi-objective approach to the prospective development of the European power system by 2050," Energy, Elsevier, vol. 191(C).
    12. Luňáčková, Petra & Průša, Jan & Janda, Karel, 2017. "The merit order effect of Czech photovoltaic plants," Energy Policy, Elsevier, vol. 106(C), pages 138-147.
    13. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.
    14. Kudełko, Mariusz, 2021. "Modeling of Polish energy sector – tool specification and results," Energy, Elsevier, vol. 215(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukáš Rečka & Milan Ščasný, 2017. "Impacts of Reclassified Brown Coal Reserves on the Energy System and Deep Decarbonisation Target in the Czech Republic," Energies, MDPI, vol. 10(12), pages 1-27, November.
    2. Lukáš Rečka & Milan Ščasný, 2015. "Partial equilibrium model of Czech energy sector – scenarios of future development," EcoMod2015 8510, EcoMod.
    3. Karel Janda & Jan Málek & Lukáš Rečka, 2017. "Vliv obnovitelných zdrojů na českou soustavu přenosu elektřiny [The Impact of Renewable Energy Sources on the Czech Electricity Transmission System]," Politická ekonomie, Prague University of Economics and Business, vol. 2017(6), pages 728-750.
    4. Janda, Karel & Málek, Jan & Rečka, Lukáš, 2017. "Influence of renewable energy sources on transmission networks in Central Europe," Energy Policy, Elsevier, vol. 108(C), pages 524-537.
    5. Mondal, Md. Alam Hossain & Ringler, Claudia & Al-Riffai, Perrihan & Eldidi, Hagar & Breisinger, Clemens & Wiebelt, Manfred, 2019. "Long-term optimization of Egypt’s power sector: Policy implications," Energy, Elsevier, vol. 166(C), pages 1063-1073.
    6. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    7. Nagatomo, Yu & Ozawa, Akito & Kudoh, Yuki & Hondo, Hiroki, 2021. "Impacts of employment in power generation on renewable-based energy systems in Japan— Analysis using an energy system model," Energy, Elsevier, vol. 226(C).
    8. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    9. Hagos, Dejene Assefa & Gebremedhin, Alemayehu & Bolkesjø, Torjus Folsland, 2017. "The prospects of bioenergy in the future energy system of Inland Norway," Energy, Elsevier, vol. 121(C), pages 78-91.
    10. Pleßmann, Guido & Blechinger, Philipp, 2017. "Outlook on South-East European power system until 2050: Least-cost decarbonization pathway meeting EU mitigation targets," Energy, Elsevier, vol. 137(C), pages 1041-1053.
    11. Karel Janda & Jan Malek & Lukas Recka, 2017. "Influence of Renewable Energy Sources on Electricity Transmission Networks in Central Europe," Working Papers IES 2017/05, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Feb 2017.
    12. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    13. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    14. Geoffrey J. Blanford & Christoph Weissbart, 2019. "A Framework for Modeling the Dynamics of Power Markets – The EU-REGEN Model," ifo Working Paper Series 307, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    15. Lion Hirth, Falko Ueckerdt, and Ottmar Edenhofer, 2016. "Why Wind Is Not Coal: On the Economics of Electricity Generation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    16. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
    17. Martin Kittel & Wolf-Peter Schill, 2021. "Renewable Energy Targets and Unintended Storage Cycling: Implications for Energy Modeling," Papers 2107.13380, arXiv.org, revised Sep 2021.
    18. Karel Janda & Jan Malek & Lukas Recka, 2017. "The Influence of Renewable Energy Sources on the Czech Electricity Transmission System," Working Papers IES 2017/06, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Mar 2017.
    19. Ahmad Murtaza Ershad & Robert Pietzcker & Falko Ueckerdt & Gunnar Luderer, 2020. "Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040," Energies, MDPI, vol. 13(9), pages 1-19, May.
    20. Mondal, Md Alam Hossain & Ringler, Claudia, 2020. "Long-term optimization of regional power sector development: Potential for cooperation in the Eastern Nile region?," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:108:y:2016:i:c:p:19-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.