IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v106y2016icp400-407.html
   My bibliography  Save this article

Two equations for estimating the exergy of woody biomass based on the exergy of ash

Author

Listed:
  • Zhang, Yaning
  • Zhao, Wenke
  • Li, Bingxi
  • Zhang, Haochun
  • Jiang, Baocheng
  • Ke, Cunfeng

Abstract

Szargut et al. [1] proposed an appropriative equation for calculating the exergy of woody biomass. Cumbersome work is involved in calculating the exergy of woody biomass as the complicated ash compositions are included for obtaining the ash exergy in the equation. Based on the exergy values of ash contents of sixty four woody biomass investigated in this study, the average value of wood ash is obtained and a positive linear relationship between ash exergy and ash content is observed. An equation based on the average exergy of wood ash with relative errors of −0.76% to 1.38% and another equation based on the relationship between ash exergy and ash content with relative errors of −1.16% to 0.88% are observed. These two easier equations can be well used for expeditious estimation of the exergy of woody biomass with high accuracies.

Suggested Citation

  • Zhang, Yaning & Zhao, Wenke & Li, Bingxi & Zhang, Haochun & Jiang, Baocheng & Ke, Cunfeng, 2016. "Two equations for estimating the exergy of woody biomass based on the exergy of ash," Energy, Elsevier, vol. 106(C), pages 400-407.
  • Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:400-407
    DOI: 10.1016/j.energy.2016.03.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302845
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.03.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bilgen, Selçuk & Keleş, Sedat & Kaygusuz, Kamil, 2012. "Calculation of higher and lower heating values and chemical exergy values of liquid products obtained from pyrolysis of hazelnut cupulae," Energy, Elsevier, vol. 41(1), pages 380-385.
    2. Naik, Satyanarayan & Goud, Vaibhav V. & Rout, Prasant K. & Jacobson, Kathlene & Dalai, Ajay K., 2010. "Characterization of Canadian biomass for alternative renewable biofuel," Renewable Energy, Elsevier, vol. 35(8), pages 1624-1631.
    3. Dai, Jing & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2015. "Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 347-355.
    4. Song, Guohui & Xiao, Jun & Zhao, Hao & Shen, Laihong, 2012. "A unified correlation for estimating specific chemical exergy of solid and liquid fuels," Energy, Elsevier, vol. 40(1), pages 164-173.
    5. Moran, J.C. & Miguez, J.L. & Porteiro, J. & Patiño, D. & Granada, E. & Collazo, J., 2009. "Study of the feasibility of mixing Refuse Derived Fuels with wood pellets through the grey and Fuzzy theory," Renewable Energy, Elsevier, vol. 34(12), pages 2607-2612.
    6. Stepanov, V.S., 1995. "Chemical energies and exergies of fuels," Energy, Elsevier, vol. 20(3), pages 235-242.
    7. Szargut, Jan, 1980. "International progress in second law analysis," Energy, Elsevier, vol. 5(8), pages 709-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malginov, Georgiy (Мальгинов, Георгий) & Radygin, Alexander (Радыгин, Александр), 2015. "Property management of the state treasury of the Russian Federation: some of the current trends [Управление Имуществом Государственной Казны Рф: Некоторые Актуальные Тенденции]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 4, pages 20-46.
    2. Mollanoori, Mohammad & Dehghan, Ali Akbar, 2024. "Estimating the higher heating value and chemical exergy of solid, liquid, and natural gas fossil fuels," Energy, Elsevier, vol. 302(C).
    3. Qian, Hongliang & Zhu, Weiwei & Fan, Sudong & Liu, Chang & Lu, Xiaohua & Wang, Zhixiang & Huang, Dechun & Chen, Wei, 2017. "Prediction models for chemical exergy of biomass on dry basis from ultimate analysis using available electron concepts," Energy, Elsevier, vol. 131(C), pages 251-258.
    4. Promdee, Kittiphop & Chanvidhwatanakit, Jirawat & Satitkune, Somruedee & Boonmee, Chakkrich & Kawichai, Thitipong & Jarernprasert, Sittipong & Vitidsant, Tharapong, 2017. "Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1175-1186.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mollanoori, Mohammad & Dehghan, Ali Akbar, 2024. "Estimating the higher heating value and chemical exergy of solid, liquid, and natural gas fossil fuels," Energy, Elsevier, vol. 302(C).
    2. Qian, Hongliang & Zhu, Weiwei & Fan, Sudong & Liu, Chang & Lu, Xiaohua & Wang, Zhixiang & Huang, Dechun & Chen, Wei, 2017. "Prediction models for chemical exergy of biomass on dry basis from ultimate analysis using available electron concepts," Energy, Elsevier, vol. 131(C), pages 251-258.
    3. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    5. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    6. Gharagheizi, Farhad & Ilani-Kashkouli, Poorandokht & Mohammadi, Amir H. & Ramjugernath, Deresh, 2014. "A group contribution method for determination of the standard molar chemical exergy of organic compounds," Energy, Elsevier, vol. 70(C), pages 288-297.
    7. Gharagheizi, Farhad & Ilani-Kashkouli, Poorandokht & Hedden, Ronald C., 2018. "Standard molar chemical exergy: A new accurate model," Energy, Elsevier, vol. 158(C), pages 924-935.
    8. Huang, Y.W. & Chen, M.Q. & Li, Y. & Guo, J., 2016. "Modeling of chemical exergy of agricultural biomass using improved general regression neural network," Energy, Elsevier, vol. 114(C), pages 1164-1175.
    9. Atienza-Martínez, María & Ábrego, Javier & Mastral, José Francisco & Ceamanos, Jesús & Gea, Gloria, 2018. "Energy and exergy analyses of sewage sludge thermochemical treatment," Energy, Elsevier, vol. 144(C), pages 723-735.
    10. Chen, Xiaohui & Zheng, Danxing & Guo, Jing & Liu, Jingxiao & Ji, Peijun, 2013. "Energy analysis for low-rank coal based process system to co-produce semicoke, syngas and light oil," Energy, Elsevier, vol. 52(C), pages 279-288.
    11. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    12. Keleş, S. & Bilgen, S., 2012. "Renewable energy sources in Turkey for climate change mitigation and energy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5199-5206.
    13. Zhang, Wei & Zhang, Juhua & Xue, Zhengliang, 2017. "Exergy analyses of the oxygen blast furnace with top gas recycling process," Energy, Elsevier, vol. 121(C), pages 135-146.
    14. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    15. Yueshi Wu & Weihong Yang & Wlodzimierz Blasiak, 2014. "Energy and Exergy Analysis of High Temperature Agent Gasification of Biomass," Energies, MDPI, vol. 7(4), pages 1-16, April.
    16. Xiang, Dong & Xiang, Junjie & Sun, Zhe & Cao, Yan, 2017. "The integrated coke-oven gas and pulverized coke gasification for methanol production with highly efficient hydrogen utilization," Energy, Elsevier, vol. 140(P1), pages 78-91.
    17. Bazooyar, Bahamin & Hosseini, Seyyed Yaghoob & Moradi Ghoje Begloo, Solat & Shariati, Ahmad & Hashemabadi, Seyed Hassan & Shaahmadi, Fariborz, 2018. "Mixed modified Fe2O3-WO3 as new fuel borne catalyst (FBC) for biodiesel fuel," Energy, Elsevier, vol. 149(C), pages 438-453.
    18. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    19. Leites, I.L. & Sama, D.A. & Lior, N., 2003. "The theory and practice of energy saving in the chemical industry: some methods for reducing thermodynamic irreversibility in chemical technology processes," Energy, Elsevier, vol. 28(1), pages 55-97.
    20. López-González, D. & Avalos-Ramirez, A. & Giroir-Fendler, A. & Godbout, S. & Fernandez-Lopez, M. & Sanchez-Silva, L. & Valverde, J.L., 2015. "Combustion kinetic study of woody and herbaceous crops by thermal analysis coupled to mass spectrometry," Energy, Elsevier, vol. 90(P2), pages 1626-1635.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:400-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.