IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v126y2017icp192-201.html
   My bibliography  Save this article

Evaluation of economic regulation in distribution systems with distributed generation

Author

Listed:
  • Huang, Yalin
  • Söder, Lennart

Abstract

The economic regulation impact on distribution system investment is evaluated by a network expansion planning model in this paper. Distributed generation (DG) integration has been taken into consideration in network investment worldwide. In most studies DG units are planned by distribution system operators (DSOs). However, in some countries DSOs are not allowed to own generation due to unbundling regulation. In the proposed model formulation, DG units are not owned by the DSOs. Moreover, fluctuation from load and DG in the planning periods, DG curtailment possibility and regulation on losses and DG connection fees are altogether considered. Different regulation arrangements are studied in the same testing network and the resulting network expansion costs are compared. The main value of this paper lies in the application of network planning model to the economic regulation analysis, in the quantification of the impact of different economic regulation frameworks, and in the implications of different regulation choices concerning distributed generation integration.

Suggested Citation

  • Huang, Yalin & Söder, Lennart, 2017. "Evaluation of economic regulation in distribution systems with distributed generation," Energy, Elsevier, vol. 126(C), pages 192-201.
  • Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:192-201
    DOI: 10.1016/j.energy.2017.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217303778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kopanos, Georgios M. & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "Energy production planning of a network of micro combined heat and power generators," Applied Energy, Elsevier, vol. 102(C), pages 1522-1534.
    2. Al-Sunaidy, A. & Green, R., 2006. "Electricity deregulation in OECD (Organization for Economic Cooperation and Development) countries," Energy, Elsevier, vol. 31(6), pages 769-787.
    3. Soroudi, Alireza & Ehsan, Mehdi, 2010. "A distribution network expansion planning model considering distributed generation options and techo-economical issues," Energy, Elsevier, vol. 35(8), pages 3364-3374.
    4. Sheikhi Fini, A. & Parsa Moghaddam, M. & Sheikh-El-Eslami, M.K., 2013. "An investigation on the impacts of regulatory support schemes on distributed energy resource expansion planning," Renewable Energy, Elsevier, vol. 53(C), pages 339-349.
    5. Ma, Chenjie & Kaufmann, Paul & Töbermann, J.-Christian & Braun, Martin, 2016. "Optimal generation dispatch of distributed generators considering fair contribution to grid voltage control," Renewable Energy, Elsevier, vol. 87(P2), pages 946-953.
    6. Kennedy, Joel & Ciufo, Phil & Agalgaonkar, Ashish, 2016. "A review of protection systems for distribution networks embedded with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1308-1317.
    7. Mehleri, Eugenia D. & Sarimveis, Haralambos & Markatos, Nikolaos C. & Papageorgiou, Lazaros G., 2012. "A mathematical programming approach for optimal design of distributed energy systems at the neighbourhood level," Energy, Elsevier, vol. 44(1), pages 96-104.
    8. Ahmadigorji, Masoud & Amjady, Nima, 2016. "A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm," Energy, Elsevier, vol. 102(C), pages 199-215.
    9. de Joode, J. & Jansen, J.C. & van der Welle, A.J. & Scheepers, M.J.J., 2009. "Increasing penetration of renewable and distributed electricity generation and the need for different network regulation," Energy Policy, Elsevier, vol. 37(8), pages 2907-2915, August.
    10. Holger Heitsch & Werner Römisch, 2009. "Scenario tree reduction for multistage stochastic programs," Computational Management Science, Springer, vol. 6(2), pages 117-133, May.
    11. Turvey, Ralph, 2006. "On network efficiency comparisons: Electricity distribution," Utilities Policy, Elsevier, vol. 14(2), pages 103-113, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grimm, Veronika & Grübel, Julia & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2020. "Storage investment and network expansion in distribution networks: The impact of regulatory frameworks," Applied Energy, Elsevier, vol. 262(C).
    2. Luis Fernando Grisales-Noreña & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2018. "Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques," Energies, MDPI, vol. 11(4), pages 1-27, April.
    3. Xu, Xinkuo & Guan, Chengmei & Jin, Jiayu, 2018. "Valuing the carbon assets of distributed photovoltaic generation in China," Energy Policy, Elsevier, vol. 121(C), pages 374-382.
    4. Senthil Kumar, J. & Charles Raja, S. & Jeslin Drusila Nesamalar, J. & Venkatesh, P., 2018. "Optimizing renewable based generations in AC/DC microgrid system using hybrid Nelder-Mead – Cuckoo Search algorithm," Energy, Elsevier, vol. 158(C), pages 204-215.
    5. Cambini, Carlo & Soroush, Golnoush, 2019. "Designing grid tariffs in the presence of distributed generation," Utilities Policy, Elsevier, vol. 61(C).
    6. Wang, Ziyao & Zhong, Lipeng & Pan, Zhenning & Yu, Tao & Qiu, Xingyu, 2022. "Optimal double Q AC-DC hybrid distribution system planning with explicit topology-variable-based reliability assessment," Applied Energy, Elsevier, vol. 322(C).
    7. Yongchun Yang & Xiaodan Wang & Jingjing Luo & Jie Duan & Yajing Gao & Hong Li & Xiangning Xiao, 2017. "Multi-Objective Coordinated Planning of Distributed Generation and AC/DC Hybrid Distribution Networks Based on a Multi-Scenario Technique Considering Timing Characteristics," Energies, MDPI, vol. 10(12), pages 1-29, December.
    8. Hong Li & Xiaodan Wang & Jie Duan & Feifan Chen & Yajing Gao, 2018. "Locating Optimization of an Integrated Energy Supply Centre in a Typical New District Based on the Load Density," Energies, MDPI, vol. 11(4), pages 1-22, April.
    9. Ghasemi, Mostafa & Dashti, Reza, 2018. "Designing a decision model to assess the reward and penalty scheme of electric distribution companies," Energy, Elsevier, vol. 147(C), pages 329-336.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    2. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    3. Hemmati, S. & Ghaderi, S.F. & Ghazizadeh, M.S., 2018. "Sustainable energy hub design under uncertainty using Benders decomposition method," Energy, Elsevier, vol. 143(C), pages 1029-1047.
    4. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    5. Silvente, Javier & Papageorgiou, Lazaros G., 2017. "An MILP formulation for the optimal management of microgrids with task interruptions," Applied Energy, Elsevier, vol. 206(C), pages 1131-1146.
    6. Giaouris, Damian & Papadopoulos, Athanasios I. & Ziogou, Chrysovalantou & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos & Stergiopoulos, Fotis & Elmasides, Costas, 2013. "Performance investigation of a hybrid renewable power generation and storage system using systemic power management models," Energy, Elsevier, vol. 61(C), pages 621-635.
    7. Amiri, S. & Honarvar, M. & sadegheih, A., 2018. "Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance," Energy, Elsevier, vol. 163(C), pages 1093-1114.
    8. Silvente, Javier & Aguirre, Adrián M. & Zamarripa, Miguel A. & Méndez, Carlos A. & Graells, Moisès & Espuña, Antonio, 2015. "Improved time representation model for the simultaneous energy supply and demand management in microgrids," Energy, Elsevier, vol. 87(C), pages 615-627.
    9. Wakui, Tetsuya & Kinoshita, Takahiro & Yokoyama, Ryohei, 2014. "A mixed-integer linear programming approach for cogeneration-based residential energy supply networks with power and heat interchanges," Energy, Elsevier, vol. 68(C), pages 29-46.
    10. Zhang, Di & Evangelisti, Sara & Lettieri, Paola & Papageorgiou, Lazaros G., 2015. "Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment," Energy, Elsevier, vol. 85(C), pages 181-193.
    11. Karmellos, M. & Georgiou, P.N. & Mavrotas, G., 2019. "A comparison of methods for the optimal design of Distributed Energy Systems under uncertainty," Energy, Elsevier, vol. 178(C), pages 318-333.
    12. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    13. Zhigang Duan & Yamin Yan & Xiaohan Yan & Qi Liao & Wan Zhang & Yongtu Liang & Tianqi Xia, 2017. "An MILP Method for Design of Distributed Energy Resource System Considering Stochastic Energy Supply and Demand," Energies, MDPI, vol. 11(1), pages 1-23, December.
    14. Andoni, Merlinda & Robu, Valentin & Früh, Wolf-Gerrit & Flynn, David, 2017. "Game-theoretic modeling of curtailment rules and network investments with distributed generation," Applied Energy, Elsevier, vol. 201(C), pages 174-187.
    15. Holjevac, Ninoslav & Capuder, Tomislav & Kuzle, Igor, 2015. "Adaptive control for evaluation of flexibility benefits in microgrid systems," Energy, Elsevier, vol. 92(P3), pages 487-504.
    16. Allegrini, Jonas & Orehounig, Kristina & Mavromatidis, Georgios & Ruesch, Florian & Dorer, Viktor & Evins, Ralph, 2015. "A review of modelling approaches and tools for the simulation of district-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1391-1404.
    17. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    18. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    19. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    20. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:192-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.