IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v152y2020icp1274-1283.html
   My bibliography  Save this article

Maximum power output prediction of HCPV FLATCON® module using an ANN approach

Author

Listed:
  • Said, Mohamed Islam
  • Steiner, Marc
  • Siefer, Gerald
  • Arab, Amar Hadj

Abstract

The estimation of the electrical power output and energy yield of high concentration photovoltaic (HCPV) modules is a hard task because of the many parameters involved. In this work, we propose the usage of an Artificial Neural Networks (ANN) method to estimate the maximum power output of a FLATCON® CPV-module manufactured by Fraunhofer ISE. The advantage of the ANN is that it is a part of the Artificial Intelligence Deep Learning domain, which makes it easy to model complex systems. A detailed knowledge about the underlying module technology is not necessary. In this work, various meteorological parameters are tested as inputs of the ANN including spectral matching ratios for considering the spectral variation of the solar irradiance to evaluate the maximum power output of the HCPV module under study. Eleven scenarios considering different combinations of input parameters have been investigated. It is demonstrated that the ANN gives excellent results and allows for an accurate prediction of the HCPV module’s instantaneous power output with only a few amount of data used on training the ANN. The model has been tested using the measured data set of a FLATCON® CPV-module located on the rooftop of the Fraunhofer ISE in Freiburg, Germany. The module has been electrically characterized outdoors in the period from April 2013 to April 2014. The accuracy of the proposed ANN approach was analyzed using this measurement data in combination with error metrics. It was found that the best agreement between the measured and the predicted maximum power output was achieved when using direct normal irradiance, wind speed, ambient temperature and spectral matching ratios as input. The normalized root mean square error for the maximum power output over one year is found to be between 2.2 and 4.6%. The deviation of the modelled energy yield to the measured one is in the range of 0.2–2.2%.

Suggested Citation

  • Said, Mohamed Islam & Steiner, Marc & Siefer, Gerald & Arab, Amar Hadj, 2020. "Maximum power output prediction of HCPV FLATCON® module using an ANN approach," Renewable Energy, Elsevier, vol. 152(C), pages 1274-1283.
  • Handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1274-1283
    DOI: 10.1016/j.renene.2020.01.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120301282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    2. García-Domingo, B. & Aguilera, J. & de la Casa, J. & Fuentes, M., 2014. "Modelling the influence of atmospheric conditions on the outdoor real performance of a CPV (Concentrated Photovoltaic) module," Energy, Elsevier, vol. 70(C), pages 239-250.
    3. Almonacid, F. & Fernández, E.F. & Mallick, T.K. & Pérez-Higueras, P.J., 2015. "High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature," Energy, Elsevier, vol. 84(C), pages 336-343.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Almonacid, Florencia & Rodrigo, Pedro & Fernández, Eduardo F., 2016. "Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques," Energy, Elsevier, vol. 101(C), pages 146-160.
    2. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    3. Fernández, Eduardo F. & Almonacid, Florencia & Garcia-Loureiro, Antonio J., 2015. "Multi-junction solar cells electrical characterization by neuronal networks under different irradiance, spectrum and cell temperature," Energy, Elsevier, vol. 90(P1), pages 846-856.
    4. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    5. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    7. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    8. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    9. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    10. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    11. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    12. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    14. Μichalena, Evanthie & Hills, Jeremy M., 2012. "Renewable energy issues and implementation of European energy policy: The missing generation?," Energy Policy, Elsevier, vol. 45(C), pages 201-216.
    15. Mellit, A. & Benghanem, M. & Arab, A. Hadj & Guessoum, A., 2005. "An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria," Renewable Energy, Elsevier, vol. 30(10), pages 1501-1524.
    16. Kuk Yeol Bae & Han Seung Jang & Bang Chul Jung & Dan Keun Sung, 2019. "Effect of Prediction Error of Machine Learning Schemes on Photovoltaic Power Trading Based on Energy Storage Systems," Energies, MDPI, vol. 12(7), pages 1-20, April.
    17. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    18. Haddad, S. & Benghanem, M. & Mellit, A. & Daffallah, K.O., 2015. "ANNs-based modeling and prediction of hourly flow rate of a photovoltaic water pumping system: Experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 635-643.
    19. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    20. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:152:y:2020:i:c:p:1274-1283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.