IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v73y2014icp57-64.html
   My bibliography  Save this article

The limits to solar thermal electricity

Author

Listed:
  • Trainer, Ted

Abstract

The potential and limits of solar thermal power systems depend primarily on their capacity to meet electricity demand in mid-winter, and the associated cost, storage and other implications. Evidence on output and costs is analysed. Most attention is given to central receivers. Problems of low radiation levels, embodied energy costs, variability and storage are discussed and are found to set significant difficulties for large scale solar thermal supply in less than ideal latitudes and seasons. It is concluded that for solar thermal systems to meet a large fraction of anticipated global electricity demand in winter would involve prohibitive capital costs.

Suggested Citation

  • Trainer, Ted, 2014. "The limits to solar thermal electricity," Energy Policy, Elsevier, vol. 73(C), pages 57-64.
  • Handle: RePEc:eee:enepol:v:73:y:2014:i:c:p:57-64
    DOI: 10.1016/j.enpol.2014.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514003012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Crawford, R.H. & Treloar, G.J. & Fuller, R.J. & Bazilian, M., 2006. "Life-cycle energy analysis of building integrated photovoltaic systems (BiPVs) with heat recovery unit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 559-575, December.
    2. Trainer, Ted, 2013. "Limits to solar thermal energy set by intermittency and low DNI: Implications from meteorological data," Energy Policy, Elsevier, vol. 63(C), pages 910-917.
    3. Trainer, Ted, 2010. "Can renewables etc. solve the greenhouse problem? The negative case," Energy Policy, Elsevier, vol. 38(8), pages 4107-4114, August.
    4. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    5. Kevin Ummel & David Wheeler, 2008. "Desert Power: The Economics of Solar Thermal Electricity for Europe, North Africa, and the Middle East," Working Papers 156, Center for Global Development.
    6. Lenzen, Manfred & Dey, Christopher, 2000. "Truncation error in embodied energy analyses of basic iron and steel products," Energy, Elsevier, vol. 25(6), pages 577-585.
    7. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    8. Graham Palmer, 2013. "Household Solar Photovoltaics: Supplier of Marginal Abatement, or Primary Source of Low-Emission Power?," Sustainability, MDPI, vol. 5(4), pages 1-37, March.
    9. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    10. Weißbach, D. & Ruprecht, G. & Huke, A. & Czerski, K. & Gottlieb, S. & Hussein, A., 2013. "Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants," Energy, Elsevier, vol. 52(C), pages 210-221.
    11. Trainer, Ted, 2012. "Can Australia run on renewable energy? The negative case," Energy Policy, Elsevier, vol. 50(C), pages 306-314.
    12. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    13. Hart, Elaine K. & Jacobson, Mark Z., 2011. "A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables," Renewable Energy, Elsevier, vol. 36(8), pages 2278-2286.
    14. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belgasim, Basim & Aldali, Yasser & Abdunnabi, Mohammad J.R. & Hashem, Gamal & Hossin, Khaled, 2018. "The potential of concentrating solar power (CSP) for electricity generation in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1-15.
    2. Lisa Reyes Mason & Colleen Cummings Melton & Darian Gray & Andrea L. Swallow, 2022. "Climate Change, Social Work, and the Transition Away from Fossil Fuels: A Scoping Review," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    3. Chun-Yu Hsiao & Chin-Hsiang Lai & Zhu-Xuan Zheng & Guan-Yu Li, 2021. "Design and Implement of Three-Phase Permanent-Magnet Synchronous Wave Generator using Taguchi Approach," Energies, MDPI, vol. 14(7), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    2. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    3. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    4. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    5. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    6. Yousefzadeh, Moslem & Lenzen, Manfred, 2019. "Performance of concentrating solar power plants in a whole-of-grid context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
    8. Trainer, Ted, 2017. "Some problems in storing renewable energy," Energy Policy, Elsevier, vol. 110(C), pages 386-393.
    9. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    10. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    11. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2014. "The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources," Applied Energy, Elsevier, vol. 134(C), pages 75-89.
    12. Trainer, Ted, 2013. "Limits to solar thermal energy set by intermittency and low DNI: Implications from meteorological data," Energy Policy, Elsevier, vol. 63(C), pages 910-917.
    13. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2013. "Global solar electric potential: A review of their technical and sustainable limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 824-835.
    14. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
    15. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    16. Xueting Zhao, 2015. "LCA Methodologies an Annotated Bibliography," Working Papers Resource Document 2015-03, Regional Research Institute, West Virginia University.
    17. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    18. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    19. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    20. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:73:y:2014:i:c:p:57-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.