IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v64y2014icp263-272.html
   My bibliography  Save this article

How much information disclosure of building energy performance is necessary?

Author

Listed:
  • Hsu, David

Abstract

Many different governments have begun to require disclosure of building energy performance, in order to allow owners and prospective buyers to incorporate this information into their investment decisions. These policies, known as disclosure or information policies, require owners to benchmark their buildings and sometimes conduct engineering audits. However, given substantial variation in the cost to disclose different types of information, it is natural to ask: how much and what kind of information about building energy performance should be disclosed, and for what purposes? To answer this question, this paper assembles and cleans a comprehensive panel dataset of New York City multifamily buildings, and analyzes its predictive power using a Bayesian multilevel regression model. Analysis of variance (ANOVA) reveals that building-level variation is the most important factor in explaining building energy use, and that there are few, if any, relationships of building systems to observed energy use. This indicates that disclosure laws requiring benchmarking data may be relatively more useful than engineering audits in explaining the observed energy performance of existing buildings. These results should inform the further development of information disclosure laws.

Suggested Citation

  • Hsu, David, 2014. "How much information disclosure of building energy performance is necessary?," Energy Policy, Elsevier, vol. 64(C), pages 263-272.
  • Handle: RePEc:eee:enepol:v:64:y:2014:i:c:p:263-272
    DOI: 10.1016/j.enpol.2013.08.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513008987
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.08.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anderson, Soren T. & Newell, Richard G., 2004. "Information programs for technology adoption: the case of energy-efficiency audits," Resource and Energy Economics, Elsevier, vol. 26(1), pages 27-50, March.
    2. Franz Fuerst & Patrick McAllister, 2011. "Green Noise or Green Value? Measuring the Effects of Environmental Certification on Office Values," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 39(1), pages 45-69, March.
    3. Piet Eichholtz & Nils Kok & John M. Quigley, 2010. "Doing Well by Doing Good? Green Office Buildings," American Economic Review, American Economic Association, vol. 100(5), pages 2492-2509, December.
    4. Hunt Allcott & Michael Greenstone, 2012. "Is There an Energy Efficiency Gap?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 3-28, Winter.
    5. Stavins, Robert N., 2003. "Experience with market-based environmental policy instruments," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 9, pages 355-435, Elsevier.
    6. Urge-Vorsatz, Diana & Novikova, Aleksandra, 2008. "Potentials and costs of carbon dioxide mitigation in the world's buildings," Energy Policy, Elsevier, vol. 36(2), pages 642-661, February.
    7. Patten, Dennis M., 1998. "The impact of the EPA's TRI disclosure program on state environmental and natural resource expenditures," Journal of Accounting and Public Policy, Elsevier, vol. 17(4-5), pages 367-382.
    8. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    9. Banerjee, Abhijit & Solomon, Barry D., 2003. "Eco-labeling for energy efficiency and sustainability: a meta-evaluation of US programs," Energy Policy, Elsevier, vol. 31(2), pages 109-123, January.
    10. Joachim Schleich, 2004. "Do energy audits help reduce barriers to energy efficiency? An empirical analysis for Germany," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 2(3), pages 226-239.
    11. Blumstein, Carl & Krieg, Betsy & Schipper, Lee & York, Carl, 1980. "Overcoming social and institutional barriers to energy conservation," Energy, Elsevier, vol. 5(4), pages 355-371.
    12. David Weil & Archon Fung & Mary Graham & Elena Fagotto, 2006. "The effectiveness of regulatory disclosure policies," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 25(1), pages 155-181.
    13. George A. Akerlof, 1970. "The Market for "Lemons": Quality Uncertainty and the Market Mechanism," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 84(3), pages 488-500.
    14. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thrampoulidis, Emmanouil & Mavromatidis, Georgios & Lucchi, Aurelien & Orehounig, Kristina, 2021. "A machine learning-based surrogate model to approximate optimal building retrofit solutions," Applied Energy, Elsevier, vol. 281(C).
    2. Alex Gonzalez Caceres & Muriel Diaz, 2018. "Usability of the EPC Tools for the Profitability Calculation of a Retrofitting in a Residential Building," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    3. Andrews, Abigail & Jain, Rishee K., 2022. "Beyond Energy Efficiency: A clustering approach to embed demand flexibility into building energy benchmarking," Applied Energy, Elsevier, vol. 327(C).
    4. Walter, Travis & Sohn, Michael D., 2016. "A regression-based approach to estimating retrofit savings using the Building Performance Database," Applied Energy, Elsevier, vol. 179(C), pages 996-1005.
    5. Roth, Jonathan & Lim, Benjamin & Jain, Rishee K. & Grueneich, Dian, 2020. "Examining the feasibility of using open data to benchmark building energy usage in cities: A data science and policy perspective," Energy Policy, Elsevier, vol. 139(C).
    6. Handing Guo & Wanzhen Qiao & Jiren Liu, 2019. "Dynamic Feedback Analysis of Influencing Factors of Existing Building Energy-Saving Renovation Market Based on System Dynamics in China," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    7. Louis-Gaëtan Giraudet, 2018. "Energy efficiency as a credence good: A review of informational barriers to building energy savings," Policy Papers 2018.04, FAERE - French Association of Environmental and Resource Economists.
    8. Elwell, Clifford A. & Biddulph, Phillip & Lowe, Robert & Oreszczyn, Tadj, 2015. "Determining the impact of regulatory policy on UK gas use using Bayesian analysis on publicly available data," Energy Policy, Elsevier, vol. 86(C), pages 770-783.
    9. Roth, Jonathan & Rajagopal, Ram, 2018. "Benchmarking building energy efficiency using quantile regression," Energy, Elsevier, vol. 152(C), pages 866-876.
    10. Mikael Mangold & Magnus Österbring & Conny Overland & Tim Johansson & Holger Wallbaum, 2018. "Building Ownership, Renovation Investments, and Energy Performance—A Study of Multi-Family Dwellings in Gothenburg," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    11. Luo, Xuan & Hong, Tianzhen & Chen, Yixing & Piette, Mary Ann, 2017. "Electric load shape benchmarking for small- and medium-sized commercial buildings," Applied Energy, Elsevier, vol. 204(C), pages 715-725.
    12. Christensen, Pernille H. & Robinson, Spenser J. & Simons, Robert A., 2018. "The influence of energy considerations on decision making by institutional real estate owners in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 275-284.
    13. Sumin Kim & Benson Teck Heng Lim & Bee Lan Oo, 2022. "Energy Consumption and Carbon Emissions of Mandatory Green Certified Offices in Australia: Evidence and Lessons Learnt across 2011–2020," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    14. Giraudet, Louis-Gaëtan, 2020. "Energy efficiency as a credence good: A review of informational barriers to energy savings in the building sector," Energy Economics, Elsevier, vol. 87(C).
    15. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
    16. Wang, Endong, 2017. "Decomposing core energy factor structure of U.S. residential buildings through principal component analysis with variable clustering on high-dimensional mixed data," Applied Energy, Elsevier, vol. 203(C), pages 858-873.
    17. Yu, Xinran & Zou, Zhengbo & Ergan, Semiha, 2023. "Extracting principal building variables from automatically collected urban scale façade images for energy conservation through deep transfer learning," Applied Energy, Elsevier, vol. 344(C).
    18. Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
    19. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Integrating evidence-based thermal satisfaction in energy benchmarking: A data-driven approach for a whole-building evaluation," Energy, Elsevier, vol. 244(PB).
    20. Jisoo Shim & Doosam Song & Joowook Kim, 2018. "The Economic Feasibility of Passive Houses in Korea," Sustainability, MDPI, vol. 10(10), pages 1-16, October.
    21. Lawal, Abiola S. & Servadio, Joseph L. & Davis, Tate & Ramaswami, Anu & Botchwey, Nisha & Russell, Armistead G., 2021. "Orthogonalization and machine learning methods for residential energy estimation with social and economic indicators," Applied Energy, Elsevier, vol. 283(C).
    22. Mathew, Paul A. & Dunn, Laurel N. & Sohn, Michael D. & Mercado, Andrea & Custudio, Claudine & Walter, Travis, 2015. "Big-data for building energy performance: Lessons from assembling a very large national database of building energy use," Applied Energy, Elsevier, vol. 140(C), pages 85-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giraudet, Louis-Gaëtan, 2020. "Energy efficiency as a credence good: A review of informational barriers to energy savings in the building sector," Energy Economics, Elsevier, vol. 87(C).
    2. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    3. Louis-Gaëtan Giraudet, 2018. "Energy efficiency as a credence good: A review of informational barriers to building energy savings," Working Papers 2018.07, FAERE - French Association of Environmental and Resource Economists.
    4. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    5. Gliedt, Travis & Hoicka, Christina E., 2015. "Energy upgrades as financial or strategic investment? Energy Star property owners and managers improving building energy performance," Applied Energy, Elsevier, vol. 147(C), pages 430-443.
    6. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    7. Fleiter, Tobias & Schleich, Joachim & Ravivanpong, Ployplearn, 2012. "Adoption of energy-efficiency measures in SMEs—An empirical analysis based on energy audit data from Germany," Energy Policy, Elsevier, vol. 51(C), pages 863-875.
    8. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    9. Tobias Fleitera & Joachim Schleich & Ployplearn Ravivanpong, 2012. "Adoption of energy-efficiency measures in SMEs - An empirical analysis based on energy audit data," Post-Print hal-00805748, HAL.
    10. Galarraga, Ibon & Abadie, Luis M. & Ansuategi, Alberto, 2013. "Efficiency, effectiveness and implementation feasibility of energy efficiency rebates: The “Renove” plan in Spain," Energy Economics, Elsevier, vol. 40(S1), pages 98-107.
    11. Hyland, Marie & Lyons, Ronan C. & Lyons, Seán, 2013. "The value of domestic building energy efficiency — evidence from Ireland," Energy Economics, Elsevier, vol. 40(C), pages 943-952.
    12. Edouard Civel & Nathaly Cruz, 2018. "Green, yellow or red lemons? Artefactual field experiment on houses energy labels perception," Working Papers 1809, Chaire Economie du climat.
    13. Edouard Civel & Nathaly Cruz-Garcia, 2018. "Green, yellow or red lemons? Framed field experiment on houses energy labels perception," EconomiX Working Papers 2018-35, University of Paris Nanterre, EconomiX.
    14. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    15. Lai, Yuan & Papadopoulos, Sokratis & Fuerst, Franz & Pivo, Gary & Sagi, Jacob & Kontokosta, Constantine E., 2022. "Building retrofit hurdle rates and risk aversion in energy efficiency investments," Applied Energy, Elsevier, vol. 306(PB).
    16. Ángeles Longarela-Ares & Anxo Calvo-Silvosa & José-Benito Pérez-López, 2020. "The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem," Sustainability, MDPI, vol. 12(19), pages 1-42, September.
    17. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    18. Maya M. Papineau, 2015. "Setting the Standard: Commercial Electricity Consumption Responses to Energy Codes," Carleton Economic Papers 15-05, Carleton University, Department of Economics.
    19. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Petrov, Ivan & Ryan, Lisa, 2021. "The landlord-tenant problem and energy efficiency in the residential rental market," Energy Policy, Elsevier, vol. 157(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:64:y:2014:i:c:p:263-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.