IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v8y2018i1p5-d193788.html
   My bibliography  Save this article

Economic Feasibility Analysis of Shale Gas Extraction from UK’s Carboniferous Bowland-Hodder Shale Unit

Author

Listed:
  • Muhammad Ahmed

    (School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA, UK)

  • Sina Rezaei-Gomari

    (School of Science and Engineering, Teesside University, Middlesbrough TS1 3BA, UK)

Abstract

For many years, shale gas exploitation has been generating contradictory views in the UK and remains subject of rising debates throughout these years. Favorably backed by the government, looking upon it as potential mechanism for gas import independency and competitiveness in global gas industry while strongly opposed by stakeholders (mainly public), idea of shale gas exploitation remains disputed with no substantial progress in past years. And this irresolution is worsened by obscurity of estimates for potential reserves and conflicting assessments on potential impact of shale gas. Yet, in case shale industry is signaled to search and extract resources, there remains another scrutiny stage that shale industry will be subjected to i.e., its extraction must be economically feasible as extracting unconventional resources is financially expensive and riskier than conventional. Hence, this study aims at analyzing the economics of UK’s most prolific Bowland shale play development by a financial model that discovers gas prices range required to earn capital cost on investment in Bowland shale play and is tested on three development plans where it determines that based on given set of hypothesis and past decade’s average gas price of $6.52/Mcf, none of the development plans hold enough probability of adding value, however, hybrid plan formulated by combination of consistent drilling and refracturing proves as economically sustainable with a RGP mean $7.21/Mcf, significantly lower than $9.76/Mcf mean for ‘drilling only’ plan. It is found that required gas price is most sensitive to initial production rate and drilling costs where ±10% variation offsets RGP by ≈ ±8% and ±7%.

Suggested Citation

  • Muhammad Ahmed & Sina Rezaei-Gomari, 2018. "Economic Feasibility Analysis of Shale Gas Extraction from UK’s Carboniferous Bowland-Hodder Shale Unit," Resources, MDPI, vol. 8(1), pages 1-17, December.
  • Handle: RePEc:gam:jresou:v:8:y:2018:i:1:p:5-:d:193788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/8/1/5/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/8/1/5/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saussay, Aurélien, 2018. "Can the US shale revolution be duplicated in continental Europe? An economic analysis of European shale gas resources," Energy Economics, Elsevier, vol. 69(C), pages 295-306.
    2. Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
    3. Cooper, Jasmin & Stamford, Laurence & Azapagic, Adisa, 2018. "Economic viability of UK shale gas and potential impacts on the energy market up to 2030," Applied Energy, Elsevier, vol. 215(C), pages 577-590.
    4. Keqiang Guo & Baosheng Zhang & Kjell Aleklett & Mikael Höök, 2016. "Production Patterns of Eagle Ford Shale Gas: Decline Curve Analysis Using 1084 Wells," Sustainability, MDPI, vol. 8(10), pages 1-13, September.
    5. Kaiser, Mark J., 2012. "Profitability assessment of Haynesville shale gas wells," Energy, Elsevier, vol. 38(1), pages 315-330.
    6. repec:hal:spmain:info:hdl:2441/3vsrea3gla9r5oaa2cle5jrqfh is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montgomery, J.B. & O’Sullivan, F.M., 2017. "Spatial variability of tight oil well productivity and the impact of technology," Applied Energy, Elsevier, vol. 195(C), pages 344-355.
    2. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    3. Hong, Bingyuan & Li, Xiaoping & Song, Shangfei & Chen, Shilin & Zhao, Changlong & Gong, Jing, 2020. "Optimal planning and modular infrastructure dynamic allocation for shale gas production," Applied Energy, Elsevier, vol. 261(C).
    4. Tan, Siah Hong & Barton, Paul I., 2015. "Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part I: Bakken shale play case study," Energy, Elsevier, vol. 93(P2), pages 1581-1594.
    5. Svetlana Ikonnikova and Gürcan Gülen, 2015. "Impact of low prices on shale gas production strategies," The Energy Journal, International Association for Energy Economics, vol. 0(Adelman S).
    6. Acquah-Andoh, Elijah & Ike, Onyekachi & Ifelebuegu, Augustine O. & Owusu, Andrews, 2020. "The fiscal regime for UK shale gas: Analysing the impacts of pad allowance on shale gas investments," Energy Policy, Elsevier, vol. 146(C).
    7. Xi Yang & Alun Gu & Fujie Jiang & Wenli Xie & Qi Wu, 2020. "Integrated Assessment Modeling of China’s Shale Gas Resource: Energy System Optimization, Environmental Cobenefits, and Methane Risk," Energies, MDPI, vol. 14(1), pages 1-24, December.
    8. Bård Misund & Petter Osmundsen, 2017. "Valuation of proved vs. probable oil and gas reserves," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1385443-138, January.
    9. Xiaoqian Guo & Qiang Yan & Anjian Wang, 2017. "Assessment of Methods for Forecasting Shale Gas Supply in China Based on Economic Considerations," Energies, MDPI, vol. 10(11), pages 1-14, October.
    10. Chen, Yan & Xu, Jintao & Wang, Pu, 2020. "Shale gas potential in China: A production forecast of the Wufeng-Longmaxi Formation and implications for future development," Energy Policy, Elsevier, vol. 147(C).
    11. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    12. Svetlana Ikonnikova & Gürcan Gülen, 2015. "Impact of Low Prices on Shale Gas Production Strategies," The Energy Journal, , vol. 36(1_suppl), pages 43-62, June.
    13. Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
    14. Evan M. Herrnstadt & Ryan Kellogg & Eric Lewis, 2020. "The Economics of Time-Limited Development Options: The Case of Oil and Gas Leases," Working Papers 2020-66, Becker Friedman Institute for Research In Economics.
    15. Jong-Hyun Kim & Yong-Gil Lee, 2018. "Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
    16. Gülen, Gürcan & Browning, John & Ikonnikova, Svetlana & Tinker, Scott W., 2013. "Well economics across ten tiers in low and high Btu (British thermal unit) areas, Barnett Shale, Texas," Energy, Elsevier, vol. 60(C), pages 302-315.
    17. Bastianin, Andrea & Galeotti, Marzio & Polo, Michele, 2019. "Convergence of European natural gas prices," Energy Economics, Elsevier, vol. 81(C), pages 793-811.
    18. Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).
    19. Saussay, Aurélien, 2018. "Can the US shale revolution be duplicated in continental Europe? An economic analysis of European shale gas resources," Energy Economics, Elsevier, vol. 69(C), pages 295-306.
    20. Gong, Jianming & Qiu, Zhen & Zou, Caineng & Wang, Hongyan & Shi, Zhensheng, 2020. "An integrated assessment system for shale gas resources associated with graptolites and its application," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:8:y:2018:i:1:p:5-:d:193788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.