IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v62y2013icp226-235.html
   My bibliography  Save this article

The influence of distributed generation penetration levels on energy markets

Author

Listed:
  • Vahl, Fabrício Peter
  • Rüther, Ricardo
  • Casarotto Filho, Nelson

Abstract

Planning of national energy policies brings new dilemmas with the introduction of distributed generators (DG). Economic theory suggests that a perfectly competitive market would lead to efficient pricing. In the absence of competition, regulators play a fundamental role in attracting reasonably priced finance in order to maintain, refurbish and increase the infrastructure and provide services at a reasonable cost. Energy market price equilibrium is mainly dependent on suppliers, generators, energy sources and demand, represented by conventional utility grid users. Its behavior is similar to that of other commodities. As generation becomes less centralized with the increasing economic viability of renewable energy sources, new suppliers are being connected to the grid. Such evolution means the transition from a monopolistic market to a broader and more open environment, with an increasing number of competitors. We make use of variational inequalities to model a hypothetical DG market in different scenarios, from monopoly, to oligopoly, to open market. Such an approach enables different equilibrium outcomes due to different DG penetration levels. Based on these findings, we argue that energy policies for such markets must be developed according to each specific stage of the grid's lifecycle. We show how energy policies and market regulations may affect such a transition, which may be catastrophic if not managed properly, and which is dependent on the energy mix.

Suggested Citation

  • Vahl, Fabrício Peter & Rüther, Ricardo & Casarotto Filho, Nelson, 2013. "The influence of distributed generation penetration levels on energy markets," Energy Policy, Elsevier, vol. 62(C), pages 226-235.
  • Handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:226-235
    DOI: 10.1016/j.enpol.2013.06.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513006150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.06.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guthrie, Graeme & Videbeck, Steen, 2007. "Electricity spot price dynamics: Beyond financial models," Energy Policy, Elsevier, vol. 35(11), pages 5614-5621, November.
    2. Eduardo Modiano, 1984. "Elasticidade - renda e preços da demanda de energia elétrica no Brasil," Textos para discussão 68, Department of Economics PUC-Rio (Brazil).
    3. Hedegaard, K. & Meibom, P., 2012. "Wind power impacts and electricity storage – A time scale perspective," Renewable Energy, Elsevier, vol. 37(1), pages 318-324.
    4. Mitscher, Martin & Rüther, Ricardo, 2012. "Economic performance and policies for grid-connected residential solar photovoltaic systems in Brazil," Energy Policy, Elsevier, vol. 49(C), pages 688-694.
    5. Cramton, Peter & Stoft, Steven, 2005. "A Capacity Market that Makes Sense," The Electricity Journal, Elsevier, vol. 18(7), pages 43-54.
    6. Krajacic, Goran & Duic, Neven & Tsikalakis, Antonis & Zoulias, Manos & Caralis, George & Panteri, Eirini & Carvalho, Maria da Graça, 2011. "Feed-in tariffs for promotion of energy storage technologies," Energy Policy, Elsevier, vol. 39(3), pages 1410-1425, March.
    7. James M. Griffin & Craig T. Schulman, 2005. "Price Asymmetry in Energy Demand Models: A Proxy for Energy-Saving Technical Change?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    8. Meeus, Leonardo, 2011. "Why (and how) to regulate power exchanges in the EU market integration context?," Energy Policy, Elsevier, vol. 39(3), pages 1470-1475, March.
    9. Passey, Robert & Spooner, Ted & MacGill, Iain & Watt, Muriel & Syngellakis, Katerina, 2011. "The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors," Energy Policy, Elsevier, vol. 39(10), pages 6280-6290, October.
    10. Nagurney, Anna & Liu, Zugang & Cojocaru, Monica-Gabriela & Daniele, Patrizia, 2007. "Dynamic electric power supply chains and transportation networks: An evolutionary variational inequality formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(5), pages 624-646, September.
    11. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
    12. Rüther, Ricardo & Zilles, Roberto, 2011. "Making the case for grid-connected photovoltaics in Brazil," Energy Policy, Elsevier, vol. 39(3), pages 1027-1030, March.
    13. Genc, Talat S. & Sen, Suvrajeet, 2008. "An analysis of capacity and price trajectories for the Ontario electricity market using dynamic Nash equilibrium under uncertainty," Energy Economics, Elsevier, vol. 30(1), pages 173-191, January.
    14. Chao, Hung-po, 2011. "Efficient pricing and investment in electricity markets with intermittent resources," Energy Policy, Elsevier, vol. 39(7), pages 3945-3953, July.
    15. Bentzen, Jan & Engsted, Tom, 1993. "Short- and long-run elasticities in energy demand : A cointegration approach," Energy Economics, Elsevier, vol. 15(1), pages 9-16, January.
    16. Cutler, Nicholas J. & Boerema, Nicholas D. & MacGill, Iain F. & Outhred, Hugh R., 2011. "High penetration wind generation impacts on spot prices in the Australian national electricity market," Energy Policy, Elsevier, vol. 39(10), pages 5939-5949, October.
    17. Houwing, Michiel & Ajah, Austin N. & Heijnen, Petra W. & Bouwmans, Ivo & Herder, Paulien M., 2008. "Uncertainties in the design and operation of distributed energy resources: The case of micro-CHP systems," Energy, Elsevier, vol. 33(10), pages 1518-1536.
    18. Rubin, Ofir & Babcock, Bruce A., 2011. "A Novel Approach for Modeling Deregulated Electricity," Staff General Research Papers Archive 32440, Iowa State University, Department of Economics.
    19. Obara, Shin’ya & Watanabe, Seizi & Rengarajan, Balaji, 2011. "Operation method study based on the energy balance of an independent microgrid using solar-powered water electrolyzer and an electric heat pump," Energy, Elsevier, vol. 36(8), pages 5200-5213.
    20. Schmidt, Cristiane Alkmin Junqueira & Lima, Marcos A. M., 2004. "A Demanda por Energia Elétrica no Brasil," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 58(1), January.
    21. Bidwell, Miles, 2005. "Reliability Options: A Market-Oriented Approach to Long-Term Adequacy," The Electricity Journal, Elsevier, vol. 18(5), pages 11-25, June.
    22. Rubin, Ofir D. & Babcock, Bruce A., 2011. "A novel approach for modeling deregulated electricity markets," Energy Policy, Elsevier, vol. 39(5), pages 2711-2721, May.
    23. Milstein, Irena & Tishler, Asher, 2011. "Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market," Energy Policy, Elsevier, vol. 39(7), pages 3922-3927, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andre Luis da Silva Leite & Nei Antonio Nunes, 2020. "Institutional Environment and the Strategies of the Firms of the Brazilian Electricity Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 53-58.
    2. André Luis da Silva Leite & Marcus Vinicius Andrade de Lima, 2023. "A GARCH Model to Understand the Volatility of the Electricity Spot Price in Brazil," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 332-338, September.
    3. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    4. Garcia, Marli da Silva & Vilpoux, Olivier François & Cereda, Marney Pascoli, 2021. "Institutional arrangements in the commercialization of electric energy from sugarcane biomass in the Brazilian midwest," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 59(3), January.
    5. John Foster & Liam Wagner & Liam Byrnes, 2014. "A Review of Distributed Generation for Rural and Remote Area Electrification," Energy Economics and Management Group Working Papers 3-2014, School of Economics, University of Queensland, Australia.
    6. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
    7. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    8. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    9. Maen Z. Kreishan & George P. Fotis & Vasiliki Vita & Lambros Ekonomou, 2016. "Distributed Generation Islanding Effect on Distribution Networks and End User Loads Using the Load Sharing Islanding Method," Energies, MDPI, vol. 9(11), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    2. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    3. José de Castro Vieira, Samuel & Tapia Carpio, Lucio Guido, 2020. "The economic impact on residential fees associated with the expansion of grid-connected solar photovoltaic generators in Brazil," Renewable Energy, Elsevier, vol. 159(C), pages 1084-1098.
    4. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    5. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    6. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    7. Meyer, Roland & Gore, Olga, 2015. "Cross-border effects of capacity mechanisms: Do uncoordinated market design changes contradict the goals of the European market integration?," Energy Economics, Elsevier, vol. 51(C), pages 9-20.
    8. Fedoseeva, Svetlana & Zeidan, Rodrigo, 2018. "How (a)symmetric is the response of import demand to changes in its determinants? Evidence from European energy imports," Energy Economics, Elsevier, vol. 69(C), pages 379-394.
    9. Mastropietro, Paolo & Rodilla, Pablo & Rivier, Michel & Batlle, Carlos, 2024. "Reliability options: Regulatory recommendations for the next generation of capacity remuneration mechanisms," Energy Policy, Elsevier, vol. 185(C).
    10. Portolan dos Santos, Ísis & Rüther, Ricardo, 2014. "Limitations in solar module azimuth and tilt angles in building integrated photovoltaics at low latitude tropical sites in Brazil," Renewable Energy, Elsevier, vol. 63(C), pages 116-124.
    11. Mayr, Dieter & Schmid, Erwin & Trollip, Hilton & Zeyringer, Marianne & Schmidt, Johannes, 2015. "The impact of residential photovoltaic power on electricity sales revenues in Cape Town, South Africa," Utilities Policy, Elsevier, vol. 36(C), pages 10-23.
    12. Romero Rodríguez, Laura & Salmerón Lissén, José Manuel & Sánchez Ramos, José & Rodríguez Jara, Enrique Ángel & Álvarez Domínguez, Servando, 2016. "Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/PV/micro-CHP systems," Applied Energy, Elsevier, vol. 165(C), pages 828-838.
    13. Malagueta, Diego & Szklo, Alexandre & Borba, Bruno Soares Moreira Cesar & Soria, Rafael & Aragão, Raymundo & Schaeffer, Roberto & Dutra, Ricardo, 2013. "Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system," Energy Policy, Elsevier, vol. 59(C), pages 198-212.
    14. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    15. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    16. Hugo Morais & Tiago Pinto & Zita Vale, 2020. "Adjacent Markets Influence Over Electricity Trading—Iberian Benchmark Study," Energies, MDPI, vol. 13(11), pages 1-22, June.
    17. Correia-da-Silva, João & Soares, Isabel & Fernández, Raquel, 2020. "Impact of dynamic pricing on investment in renewables," Energy, Elsevier, vol. 202(C).
    18. Darudi, Ali & Weigt, Hannes, 2019. "Renewable Support, Intermittency and Market Power: An Equilibrium Investment Approach," Working papers 2019/06, Faculty of Business and Economics - University of Basel.
    19. Milstein, Irena & Tishler, Asher & Woo, Chi-Keung, 2022. "Wholesale electricity market economics of solar generation in Israel," Utilities Policy, Elsevier, vol. 79(C).
    20. Hunt, Lester C. & Ryan, David L., 2015. "Economic modelling of energy services: Rectifying misspecified energy demand functions," Energy Economics, Elsevier, vol. 50(C), pages 273-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:62:y:2013:i:c:p:226-235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.