IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v147y2015icp82-91.html
   My bibliography  Save this article

Optimal combinable and dedicated energy crop scenarios for marginal land

Author

Listed:
  • Glithero, N.J.
  • Wilson, P.
  • Ramsden, S.J.

Abstract

Modern biomass energy sources account for less than 2% of primary world energy supplies while major economies have enabled legislation that aims to increase bioenergy production. In response to controversies over first generation biofuel, it has been argued that ‘marginal land’ should be used to produce dedicated energy crops (DECs). However, defining marginality of agricultural land is complex, and moreover, DECs would have to out-compete current agricultural production in these areas. Utilising a bio-economic farm-level modelling approach we investigate the impact that crop yield penalties resulting from production in marginal land contexts have on financially optimal farm-level crop plans. Where farm businesses choose to de-invest in own farm machinery, yield reductions of less than 10% for winter wheat result in a financially optimal switch to 100% miscanthus production. By contrast, in the presence of own farm machinery, winter wheat yield penalties of 30% are required before 100% miscanthus production is financially optimal. However, under circumstances where DECs also suffer yield penalties on marginal land, the financially optimal crop mix includes combinable crops. The results demonstrate that the optimal crop mix is dependent upon the relative combinable and DEC yields, together with farm-level decisions towards machinery ownership. The focus of much policy attention relating to production of DECs on ‘marginal land’ is therefore argued to be incomplete. Policies which encourage farmers to de-invest in own farm machinery, or incentivise the purchase of specific DEC machinery, may play an important role in assisting the development of DEC production.

Suggested Citation

  • Glithero, N.J. & Wilson, P. & Ramsden, S.J., 2015. "Optimal combinable and dedicated energy crop scenarios for marginal land," Applied Energy, Elsevier, vol. 147(C), pages 82-91.
  • Handle: RePEc:eee:appene:v:147:y:2015:i:c:p:82-91
    DOI: 10.1016/j.apenergy.2015.01.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915001567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sherrington, Chris & Moran, Dominic, 2010. "Modelling farmer uptake of perennial energy crops in the UK," Energy Policy, Elsevier, vol. 38(7), pages 3567-3578, July.
    2. G. M. Peterson & J. K. Galbraith, 1932. "The Concept of Marginal Land," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 14(2), pages 295-310.
    3. Glithero, N.J. & Ramsden, S.J. & Wilson, P., 2012. "Farm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches," Agricultural Systems, Elsevier, vol. 109(C), pages 53-64.
    4. Derek Headey & Shenggen Fan, 2008. "Anatomy of a crisis: the causes and consequences of surging food prices," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 375-391, November.
    5. Ramsden, S. & Gibbons, J. & Wilson, P., 1999. "Impacts of changing relative prices on farm level dairy production in the UK," Agricultural Systems, Elsevier, vol. 62(3), pages 201-215, December.
    6. J E Annetts & E Audsley, 2002. "Multiple objective linear programming for environmental farm planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(9), pages 933-943, September.
    7. Alexander, Peter & Moran, Dominic, 2013. "Impact of perennial energy crops income variability on the crop selection of risk averse farmers," Energy Policy, Elsevier, vol. 52(C), pages 587-596.
    8. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    9. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    10. Shortall, O.K., 2013. "“Marginal land” for energy crops: Exploring definitions and embedded assumptions," Energy Policy, Elsevier, vol. 62(C), pages 19-27.
    11. Wilson, P. & Glithero, N.J. & Ramsden, S.J., 2014. "Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers," Energy Policy, Elsevier, vol. 74(C), pages 101-110.
    12. Bocquého, G. & Jacquet, F., 2010. "The adoption of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences," Energy Policy, Elsevier, vol. 38(5), pages 2598-2607, May.
    13. Glithero, Neryssa J. & Wilson, Paul & Ramsden, Stephen J., 2013. "Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England," Applied Energy, Elsevier, vol. 107(C), pages 209-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Helis & Maria Strzelczyk & Wojciech Golimowski & Aleksandra Steinhoff-Wrześniewska & Anna Paszkiewicz-Jasińska & Małgorzata Hawrot-Paw & Adam Koniuszy & Marek Hryniewicz, 2021. "Biomass Potential of the Marginal Land of the Polish Sudetes Mountain Range," Energies, MDPI, vol. 14(21), pages 1-16, November.
    2. Parra-López, Carlos & Holley, Martin & Lindegaard, Kevin & Sayadi, Samir & Esteban-López, Gonzalo & Durán-Zuazo, Víctor H. & Knauer, Christoph & Engelbrechten, Hans-Georg von & Winterber, Ralf & Henri, 2017. "Strengthening the development of the short-rotation plantations bioenergy sector: Policy insights from six European countries," Renewable Energy, Elsevier, vol. 114(PB), pages 781-793.
    3. Townsend, Toby J. & Ramsden, Stephen J. & Wilson, Paul, 2016. "Analysing reduced tillage practices within a bio-economic modelling framework," Agricultural Systems, Elsevier, vol. 146(C), pages 91-102.
    4. Chen, Xiaoguang & Khanna, Madhu, 2018. "Effect of corn ethanol production on Conservation Reserve Program acres in the US," Applied Energy, Elsevier, vol. 225(C), pages 124-134.
    5. Townsend, Toby J. & Ramsden, Stephen J. & Wilson, Paul, 2015. "Towards Sustainable Intensification of Cropping Systems: Analysing Reduced Tillage Practices within a Bio-Economic Modelling Framework," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 204298, Agricultural Economics Society.
    6. Liu, Tingting & Huffman, Ted & Kulshreshtha, Suren & McConkey, Brian & Du, Yuneng & Green, Melodie & Liu, Jiangui & Shang, Jiali & Geng, Xiaoyuan, 2017. "Bioenergy production on marginal land in Canada: Potential, economic feasibility, and greenhouse gas emissions impacts," Applied Energy, Elsevier, vol. 205(C), pages 477-485.
    7. Nie, Yaoyu & Cai, Wenjia & Wang, Can & Huang, Guorui & Ding, Qun & Yu, Le & Li, Haoran & Ji, Duoying, 2019. "Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China – The case of sweet sorghum," Applied Energy, Elsevier, vol. 239(C), pages 395-407.
    8. Ben Zhang & Jie Yang & Yinxia Cao, 2021. "Assessing Potential Bioenergy Production on Urban Marginal Land in 20 Major Cities of China by the Use of Multi-View High-Resolution Remote Sensing Data," Sustainability, MDPI, vol. 13(13), pages 1-20, June.
    9. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    10. Adams, P.W.R. & Lindegaard, K., 2016. "A critical appraisal of the effectiveness of UK perennial energy crops policy since 1990," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 188-202.
    11. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adams, P.W.R. & Lindegaard, K., 2016. "A critical appraisal of the effectiveness of UK perennial energy crops policy since 1990," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 188-202.
    2. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    3. Calliope Panoutsou & Efthymia Alexopoulou, 2020. "Costs and Profitability of Crops for Bioeconomy in the EU," Energies, MDPI, vol. 13(5), pages 1-27, March.
    4. Wilson, P. & Glithero, N.J. & Ramsden, S.J., 2014. "Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers," Energy Policy, Elsevier, vol. 74(C), pages 101-110.
    5. Ben Fradj, Nosra & Jayet, Pierre Alain & Rozakis, Stelios & Georganta, Eleni & Jędrejek, Anna, 2020. "Contribution of agricultural systems to the bioeconomy in Poland: Integration of willow in the context of a stylised CAP diversification," Land Use Policy, Elsevier, vol. 99(C).
    6. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    7. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    8. Soraya Tanure & Carlos Nabinger & João Luiz Becker, 2015. "Bioeconomic Model of Decision Support System for Farm Management: Proposal of a Mathematical Model," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(6), pages 658-671, November.
    9. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    10. Niblick, Briana & Landis, Amy E., 2016. "Assessing renewable energy potential on United States marginal and contaminated sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 489-497.
    11. Ge, Jiaqi & Sutherland, Lee-Ann & Polhill, J. Gary & Matthews, Keith & Miller, Dave & Wardell-Johnson, Douglas, 2017. "Exploring factors affecting on-farm renewable energy adoption in Scotland using large-scale microdata," Energy Policy, Elsevier, vol. 107(C), pages 548-560.
    12. Carlos S. Ciria & Marina Sanz & Juan Carrasco & Pilar Ciria, 2019. "Identification of Arable Marginal Lands under Rainfed Conditions for Bioenergy Purposes in Spain," Sustainability, MDPI, vol. 11(7), pages 1-17, March.
    13. Tanure, Soraya & Nabinger, Carlos & Becker, João Luiz, 2013. "Bioeconomic model of decision support system for farm management. Part I: Systemic conceptual modeling," Agricultural Systems, Elsevier, vol. 115(C), pages 104-116.
    14. Sallustio, Lorenzo & Pettenella, Davide & Merlini, Paolo & Romano, Raoul & Salvati, Luca & Marchetti, Marco & Corona, Piermaria, 2018. "Assessing the economic marginality of agricultural lands in Italy to support land use planning," Land Use Policy, Elsevier, vol. 76(C), pages 526-534.
    15. Glithero, N.J. & Ramsden, S.J. & Wilson, P., 2013. "Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective," Energy Policy, Elsevier, vol. 59(C), pages 161-171.
    16. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2010. "An integer programming dynamic farm-household model to evaluate the impact of agricultural policy reforms on farm investment behaviour," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1130-1139, December.
    17. Ira R. Cooke & Elizabeth H. A. Mattison & Eric Audsley & Alison P. Bailey & Robert P. Freckleton & Anil R. Graves & Joe Morris & Simon A. Queenborough & Daniel L. Sandars & Gavin M. Siriwardena & Paul, 2013. "Empirical Test of an Agricultural Landscape Model," SAGE Open, , vol. 3(2), pages 21582440134, April.
    18. Flaten, O. & Bakken, A.K. & Randby, Å.T., 2015. "The profitability of harvesting grass silages at early maturity stages: An analysis of dairy farming systems in Norway," Agricultural Systems, Elsevier, vol. 136(C), pages 85-95.
    19. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Happe, K. & Hutchings, N.J. & Dalgaard, T. & Kellerman, K., 2011. "Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation," Agricultural Systems, Elsevier, vol. 104(3), pages 281-291, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:147:y:2015:i:c:p:82-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.