IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v32y2007i7p1243-1257.html
   My bibliography  Save this article

Methane generation in landfills

Author

Listed:
  • Themelis, Nickolas J.
  • Ulloa, Priscilla A.

Abstract

Methane gas is a by-product of landfilling municipal solid wastes (MSW). Most of the global MSW is dumped in non-regulated landfills and the generated methane is emitted to the atmosphere. Some of the modern regulated landfills attempt to capture and utilize landfill biogas, a renewable energy source, to generate electricity or heat. As of 2001, there were about one thousand landfills collecting landfill biogas worldwide. The landfills that capture biogas in the US collect about 2.6 million tonnes of methane annually, 70% of which is used to generate heat and/or electricity. The landfill gas situation in the US was used to estimate the potential for additional collection and utilization of landfill gas in the US and worldwide. Theoretical and experimental studies indicate that complete anaerobic biodegradation of MSW generates about 200 Nm3 of methane per dry tonne of contained biomass. However, the reported rate of generation of methane in industrial anaerobic digestion reactors ranges from 40 to 80Nm3 per tonne of organic wastes. Several US landfills report capturing as much as 100 Nm3 of methane per ton of MSW landfilled in a given year. These findings led to a conservative estimate of methane generation of about 50Nm3 of methane per ton of MSW landfilled. Therefore, for the estimated global landfilling of 1.5 billion tones annually, the corresponding rate of methane generation at landfills is 75 billion Nm3. Less than 10% of this potential is captured and utilized at this time.

Suggested Citation

  • Themelis, Nickolas J. & Ulloa, Priscilla A., 2007. "Methane generation in landfills," Renewable Energy, Elsevier, vol. 32(7), pages 1243-1257.
  • Handle: RePEc:eee:renene:v:32:y:2007:i:7:p:1243-1257
    DOI: 10.1016/j.renene.2006.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148106001091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2006.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:32:y:2007:i:7:p:1243-1257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.