IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v48y2012icp526-536.html
   My bibliography  Save this article

Policy incentives for switchgrass production using valuation of non-market ecosystem services

Author

Listed:
  • Chamberlain, Jim F.
  • Miller, Shelie A.

Abstract

This study presents a linear profit model with combined economic and environmental factors for a switchgrass-for-biofuels agricultural system in the southeastern U.S. The objectives are to establish conversion-to-switchgrass thresholds for various market prices and identify policy incentives that would ensure economic profit while also maximizing environmental benefits (carbon sequestration, displacement of fossil fuels) and minimizing negative impacts (global warming potential, nitrate loss). Weighting factors are chosen to represent incentives and penalties by assigning value to the impacts. With no other incentives, switchgrass market prices of at least $51 and $58/dton would be needed in order to make a profitable switch from corn/Conservation Reserve Program (CRP) lands and cotton, respectively. At a mid-range offering of $50/dton, feasible carbon credit prices of $3/ $8/ $23 per metric tonne CO2e would incentivize conversion from corn, CRP, or cotton, respectively. Similarly, a water quality penalty of $0.20/ $3/ $2 per kilogram NO3–N leached would incentivize the same conversions with resultant watershed improvement. At a lower price of $30/dton switchgrass, incentives based on valuation of ecosystem services begin to exceed feasible ranges of these valuations.

Suggested Citation

  • Chamberlain, Jim F. & Miller, Shelie A., 2012. "Policy incentives for switchgrass production using valuation of non-market ecosystem services," Energy Policy, Elsevier, vol. 48(C), pages 526-536.
  • Handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:526-536
    DOI: 10.1016/j.enpol.2012.05.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512004703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.05.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martinez-Alier, Joan & Munda, Giuseppe & O'Neill, John, 1998. "Weak comparability of values as a foundation for ecological economics," Ecological Economics, Elsevier, vol. 26(3), pages 277-286, September.
    2. Schneider, Uwe A. & McCarl, Bruce A., 2005. "Implications of a Carbon-Based Energy Tax for U.S. Agriculture," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 34(2), pages 1-15, October.
    3. Wen-yuan Huang & Michael LeBlanc, 1994. "Market-Based Incentives for Addressing Non-Point Water Quality Problems: A Residual Nitrogen Tax Approach," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 16(3), pages 427-440.
    4. Norgaard, Richard B. & Bode, Collin, 1998. "Next, the value of God, and other reactions," Ecological Economics, Elsevier, vol. 25(1), pages 37-39, April.
    5. Haque, Mohua & Epplin, Francis M. & Aravindhakshan, Sijesh C. & Taliaferro, Charles M., 2008. "Cost to Produce Cellulosic Biomass Feedstock: Four Perennial Grass Species Compared," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6817, Southern Agricultural Economics Association.
    6. Gilbert E. Metcalf, 2009. "Market-Based Policy Options to Control U.S. Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 5-27, Spring.
    7. Swinton, Scott M. & Babcock, Bruce A. & James, Laura K. & Bandaru, Varaprasad, 2011. "Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited," Energy Policy, Elsevier, vol. 39(9), pages 5254-5258, September.
    8. O'Hara, Sabine U., 1996. "Discursive ethics in ecosystems valuation and environmental policy," Ecological Economics, Elsevier, vol. 16(2), pages 95-107, February.
    9. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    10. Swinton, Scott & Babcock, Bruce A. & James, Laura K. & Bandaru, Varaprasad, 2011. "Higher U.S. Crop Prices Trigger Little Area Expansion So Marginal Land for Biofuels is Limited," Staff General Research Papers Archive 34897, Iowa State University, Department of Economics.
    11. Hallam, Arne & Anderson, I. C. & Buxton, D. R., 2001. "Comparative Economic Analysis of Perennial, Annual and Intercrops for Biomass Production," Staff General Research Papers Archive 5076, Iowa State University, Department of Economics.
    12. Munda, Giuseppe, 2004. "Social multi-criteria evaluation: Methodological foundations and operational consequences," European Journal of Operational Research, Elsevier, vol. 158(3), pages 662-677, November.
    13. Warwick J. McKibbin & Peter J. Wilcoxen, 2002. "The Role of Economics in Climate Change Policy," Journal of Economic Perspectives, American Economic Association, vol. 16(2), pages 107-129, Spring.
    14. Turner, R. K. & Adger, W. N. & Brouwer, R., 1998. "Ecosystem services value, research needs, and policy relevance: a commentary," Ecological Economics, Elsevier, vol. 25(1), pages 61-65, April.
    15. Martinez-Alier, Joan & Kallis, Giorgos & Veuthey, Sandra & Walter, Mariana & Temper, Leah, 2010. "Social Metabolism, Ecological Distribution Conflicts, and Valuation Languages," Ecological Economics, Elsevier, vol. 70(2), pages 153-158, December.
    16. Lawrence D. Mapemba & Francis M. Epplin & Charles M. Taliaferro & Raymond L. Huhnke, 2007. "Biorefinery Feedstock Production on Conservation Reserve Program Land," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 227-246.
    17. Bocquého, G. & Jacquet, F., 2010. "The adoption of switchgrass and miscanthus by farmers: Impact of liquidity constraints and risk preferences," Energy Policy, Elsevier, vol. 38(5), pages 2598-2607, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharp, Benjamin E. & Miller, Shelie A., 2014. "Estimating maximum land use change potential from a regional biofuel industry," Energy Policy, Elsevier, vol. 65(C), pages 261-269.
    2. Sharma, Bijay P. & Khanna, Madhu & Miao, Ruiqing, 2022. "Designing Efficient Payments to Incentivize GHG Mitigation Using Energy Crops," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322361, Agricultural and Applied Economics Association.
    3. Zanxin Wang & Fangyuan Zheng & Shiya Xue, 2019. "The Economic Feasibility of the Valorization of Water Hyacinth for Bioethanol Production," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    4. Pamela Kaval & Marjan van den Belt, 2017. "The Organizing Framework of Ecosystem Services and its use in River Management," Working Papers in Economics 17/22, University of Waikato.
    5. Noe, Ryan R. & Nachman, Elizabeth R. & Heavenrich, Hannah R. & Keeler, Bonnie L. & Hernández, Daniel L. & Hill, Jason D., 2016. "Assessing uncertainty in the profitability of prairie biomass production with ecosystem service compensation," Ecosystem Services, Elsevier, vol. 21(PA), pages 103-108.
    6. repec:ags:aaea22:335923 is not listed on IDEAS
    7. Rahman, Md. Mizanur & B. Mostafiz, Suraiya & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 108-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miroslava Rajcaniova & d'Artis Kancs & Pavel Ciaian, 2014. "Bioenergy and global land-use change," Applied Economics, Taylor & Francis Journals, vol. 46(26), pages 3163-3179, September.
    2. Spash, Clive L., 2013. "The shallow or the deep ecological economics movement?," Ecological Economics, Elsevier, vol. 93(C), pages 351-362.
    3. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    4. Mellor, P. & Lord, R.A. & João, E. & Thomas, R. & Hursthouse, A., 2021. "Identifying non-agricultural marginal lands as a route to sustainable bioenergy provision - A review and holistic definition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Kauffman, Nathan S. & Hayes, Dermot J., 2013. "The trade-off between bioenergy and emissions with land constraints," Energy Policy, Elsevier, vol. 54(C), pages 300-310.
    6. Garmendia, Eneko & Gamboa, Gonzalo, 2012. "Weighting social preferences in participatory multi-criteria evaluations: A case study on sustainable natural resource management," Ecological Economics, Elsevier, vol. 84(C), pages 110-120.
    7. Mooney, Daniel F. & Roberts, Roland K. & English, Burton C. & Tyler, Donald D. & Larson, James A., 2008. "Switchgrass Production in Marginal Environments: A Comparative Economic Analysis across Four West Tennessee Landscapes," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6403, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. repec:lic:licosd:33613 is not listed on IDEAS
    9. Jennifer Ifft & Deepak Rajagopal & Ryan Weldzuis, 2019. "Ethanol Plant Location and Land Use: A Case Study of CRP and the Ethanol Mandate," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(1), pages 37-55, March.
    10. Venkatachalam, L., 2007. "Environmental economics and ecological economics: Where they can converge?," Ecological Economics, Elsevier, vol. 61(2-3), pages 550-558, March.
    11. Chen, Xiaoguang & Khanna, Madhu, 2018. "Effect of corn ethanol production on Conservation Reserve Program acres in the US," Applied Energy, Elsevier, vol. 225(C), pages 124-134.
    12. Piroli, Giuseppe & Ciaian, Pavel & Kancs, d'Artis, 2012. "Land use change impacts of biofuels: Near-VAR evidence from the US," Ecological Economics, Elsevier, vol. 84(C), pages 98-109.
    13. Miroslava Rajcaniova & d'Artis Kancs & Pavel Ciaian, 2014. "Bioenergy and global land-use change," Applied Economics, Taylor & Francis Journals, vol. 46(26), pages 3163-3179, September.
    14. Dumortier, Jerome, 2015. "Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition," IU SPEA AgEcon Papers 198707, Indiana University, IU School of Public and Environmental Affairs.
    15. Wilson, P. & Glithero, N.J. & Ramsden, S.J., 2014. "Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers," Energy Policy, Elsevier, vol. 74(C), pages 101-110.
    16. Burli, Pralhad & Lal, Pankaj & Wolde, Bernabas & Jose, Shibu & Bardhan, Sougata, 2021. "Perceptions about switchgrass and land allocation decisions: Evidence from a farmer survey in Missouri," Land Use Policy, Elsevier, vol. 109(C).
    17. Sharp, Benjamin E. & Miller, Shelie A., 2014. "Estimating maximum land use change potential from a regional biofuel industry," Energy Policy, Elsevier, vol. 65(C), pages 261-269.
    18. Ifft, Jennifer & Rajagopal, Deepak & Ryan, Weldzius, 2016. "The effect of the ethanol mandate on the Conservation Reserve Program," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236178, Agricultural and Applied Economics Association.
    19. Doumax, Virginie & Philip, Jean-Marc & Sarasa, Cristina, 2014. "Biofuels, tax policies and oil prices in France: Insights from a dynamic CGE model," Energy Policy, Elsevier, vol. 66(C), pages 603-614.
    20. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    21. Garmendia, Eneko & Stagl, Sigrid, 2010. "Public participation for sustainability and social learning: Concepts and lessons from three case studies in Europe," Ecological Economics, Elsevier, vol. 69(8), pages 1712-1722, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:48:y:2012:i:c:p:526-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.