IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i6p3476-3482.html
   My bibliography  Save this article

India's emissions in a climate constrained world

Author

Listed:
  • Singh, Kartikeya

Abstract

Scientific studies have repeatedly shown the need to prevent the increase in global emissions so that the planet's average temperature does not exceed 2 °C over pre-industrial levels. While the divisions between Annex 1 and non-Annex nations continue to prevent the realization of a comprehensive global climate treaty, all members of the G-20 (incidentally also major emitters) have agreed to prevent the rise in global temperatures above 2 °C. This requires that nations consider budgeting their carbon emissions. India presents a unique case study to examine how a major emitter facing a desperate need to increase energy consumption will meet this challenge. The Greenhouse Development Rights (GDR) framework, perhaps considered the most favorable with respect to the responsibility and capacity of India to reduce emissions, was used to explore India's emissions trajectory. India's emissions have been pegged to the pathway required to meet the 2 °C target by non-Annex countries. The results have been compared to the expected emissions from 11 energy fuel mix scenarios up to the year 2031 forecasted by the Planning Commission of India. Results reveal that none of the 11 energy scenarios would help India meet its emissions target if it were to follow the 2 °C pathway. A thought experiment is followed to explore how India may meet this target. This includes a sensitivity analysis targeting coal consumption, the biggest contributor to India's emissions.

Suggested Citation

  • Singh, Kartikeya, 2011. "India's emissions in a climate constrained world," Energy Policy, Elsevier, vol. 39(6), pages 3476-3482, June.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3476-3482
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511002266
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. IIMI, Atsushi, 2007. "Estimating global climate change impacts on hydropower projects : applications in India, Sri Lanka and Vietnam," Policy Research Working Paper Series 4344, The World Bank.
    2. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandran Govindaraju, V.G.R. & Tang, Chor Foon, 2013. "The dynamic links between CO2 emissions, economic growth and coal consumption in China and India," Applied Energy, Elsevier, vol. 104(C), pages 310-318.
    2. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    3. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    2. Sam Fankhauser & Cameron Hepburn, 2009. "Carbon markets in space and time," GRI Working Papers 3, Grantham Research Institute on Climate Change and the Environment.
    3. Waldemar Karpa & Antonio Grginović, 2021. "(Not So) Stranded: The Case of Coal in Poland," Energies, MDPI, vol. 14(24), pages 1-16, December.
    4. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    5. Laeven, Luc & Popov, Alexander, 2023. "Carbon taxes and the geography of fossil lending," Journal of International Economics, Elsevier, vol. 144(C).
    6. Jin Xue & Hans Jakob Walnum & Carlo Aall & Petter Næss, 2016. "Two Contrasting Scenarios for a Zero-Emission Future in a High-Consumption Society," Sustainability, MDPI, vol. 9(1), pages 1-25, December.
    7. Agliardi, Elettra & Xepapadeas, Anastasios, 2022. "Temperature targets, deep uncertainty and extreme events in the design of optimal climate policy," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    8. Song Gao, 2015. "Managing short-lived climate forcers in curbing climate change: an atmospheric chemistry synopsis," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(2), pages 130-137, June.
    9. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    10. Antoine GODIN & Emanuele CAMPIGLIO & Eric KEMP-BENEDICT, 2017. "Networks of stranded assets: A case for a balance sheet approach," Working Paper d51a41b5-00ba-40b4-abe6-5, Agence française de développement.
    11. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    12. repec:sae:envval:v:26:y:2017:i:6:p:669-691 is not listed on IDEAS
    13. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    14. Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.
    15. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    16. José Manuel & Luna Romo González, 2018. "The risk of climate change in financial markets and institutions: international challenges, measures and initiatives," Financial Stability Review, Banco de España, issue Spring.
    17. Sen, Suphi & von Schickfus, Marie-Theres, 2020. "Climate policy, stranded assets, and investors’ expectations," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    18. Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
    19. Sharma, Amalesh & Moses, Aditya Christopher & Borah, Sourav Bikash & Adhikary, Anirban, 2020. "Investigating the impact of workforce racial diversity on the organizational corporate social responsibility performance: An institutional logics perspective," Journal of Business Research, Elsevier, vol. 107(C), pages 138-152.
    20. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    21. Bürger, Veit, 2013. "The assessment of the regulatory and support framework for domestic buildings in Germany from the perspective of long-term climate protection targets," Energy Policy, Elsevier, vol. 59(C), pages 71-81.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:6:p:3476-3482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.