IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i8p3849-3864.html
   My bibliography  Save this article

Nuclear power: Understanding the economic risks and uncertainties

Author

Listed:
  • Kessides, Ioannis N.

Abstract

This paper identifies the fundamental elements and critical research tasks of a comprehensive analysis of the costs and benefits of nuclear power relative to investments in alternative baseload technologies. The proposed framework seeks to: (i) identify the set of expected parameter values under which nuclear power becomes cost competitive relative to alternative generating technologies; (ii) identify the main risk drivers and quantify their impacts on the costs of nuclear power; (iii) estimate the nuclear power option value; (iv) assess the nexus between electricity market structure and the commercial attractiveness of nuclear power; (v) evaluate the economics of smaller sized nuclear reactors; (vi) identify options for strengthening the institutional underpinnings of the international safeguards regime; and (vii) evaluate the proliferation resistance of new generation reactors and fuel cycles.

Suggested Citation

  • Kessides, Ioannis N., 2010. "Nuclear power: Understanding the economic risks and uncertainties," Energy Policy, Elsevier, vol. 38(8), pages 3849-3864, August.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:8:p:3849-3864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00168-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabien A. Roques & William J. Nuttall & David M. Newbery & Richard de Neufville & Stephen Connors, 2006. "Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices?," The Energy Journal, , vol. 27(4), pages 1-24, October.
    2. Cabrera-Palmer, Belkis & Rothwell, Geoffrey, 2008. "Why is Brazil enriching uranium?," Energy Policy, Elsevier, vol. 36(7), pages 2570-2577, July.
    3. Geoffrey Rothwell, 2006. "A Real Options Approach to Evaluating New Nuclear Power Plants," The Energy Journal, , vol. 27(1), pages 37-54, January.
    4. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    5. Gollier, Christian & Proult, David & Thais, Francoise & Walgenwitz, Gilles, 2005. "Choice of nuclear power investments under price uncertainty: Valuing modularity," Energy Economics, Elsevier, vol. 27(4), pages 667-685, July.
    6. Rothwell, Geoffrey, 2010. "International light water nuclear fuel fabrication supply: Are fabrication services assured?," Energy Economics, Elsevier, vol. 32(3), pages 538-544, May.
    7. Chapman, Chris & Ward, Stephen, 1996. "Valuing the flexibility of alternative sources of power generation," Energy Policy, Elsevier, vol. 24(2), pages 129-136, February.
    8. Spinney, Peter J & Watkins, G Campbell, 1996. "Monte Carlo simulation techniques and electric utility resource decisions," Energy Policy, Elsevier, vol. 24(2), pages 155-163, February.
    9. Geoffrey Rothwell, "undated". "Market Power in Uranium Enrichment," Discussion Papers 08-032, Stanford Institute for Economic Policy Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Staffan A Qvist & Barry W Brook, 2015. "Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-10, May.
    2. Brookes, Naomi J. & Locatelli, Giorgio, 2015. "Power plants as megaprojects: Using empirics to shape policy, planning, and construction management," Utilities Policy, Elsevier, vol. 36(C), pages 57-66.
    3. Brook, Barry W., 2012. "Could nuclear fission energy, etc., solve the greenhouse problem? The affirmative case," Energy Policy, Elsevier, vol. 42(C), pages 4-8.
    4. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    5. Wegel, Sebastian & Czempinski, Victoria & Oei, Pao-Yu & Wealer, Ben, 2019. "Transporting and Storing High-Level Nuclear Waste in the U.S.—Insights from a Mathematical Model," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(12), pages 1-23.
    6. Cardin, Michel-Alexandre & Zhang, Sizhe & Nuttall, William J., 2017. "Strategic real option and flexibility analysis for nuclear power plants considering uncertainty in electricity demand and public acceptance," Energy Economics, Elsevier, vol. 64(C), pages 226-237.
    7. Mari, Carlo, 2014. "Hedging electricity price volatility using nuclear power," Applied Energy, Elsevier, vol. 113(C), pages 615-621.
    8. Werner, Dan, 2014. "Electricity Market Price Volatility: The Importance of Ramping Costs," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169619, Agricultural and Applied Economics Association.
    9. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2014. "Decision-support tool for assessing future nuclear reactor generation portfolios," Energy Economics, Elsevier, vol. 44(C), pages 99-112.
    10. Schmeda-Lopez, Diego & McConnaughy, Thomas B. & McFarland, Eric W., 2018. "Radiation enhanced chemical production: Improving the value proposition of nuclear power," Energy, Elsevier, vol. 162(C), pages 491-504.
    11. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    12. Huhtala, Anni & Remes, Piia, 2017. "Quantifying the social costs of nuclear energy: Perceived risk of accident at nuclear power plants," Energy Policy, Elsevier, vol. 105(C), pages 320-331.
    13. Huhtala, Anni & Remes, Piia, 2016. "Dimming Hopes for Nuclear Power: Quantifying the Social Costs of Perceptions of Risks," Working Papers 57, VATT Institute for Economic Research.
    14. Milstein, Irena & Tishler, Asher, 2011. "Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market," Energy Policy, Elsevier, vol. 39(7), pages 3922-3927, July.
    15. Roh, Seungkook & Kim, Wonjoon, 2014. "How can Korea secure uranium enrichment and spent fuel reprocessing rights?," Energy Policy, Elsevier, vol. 68(C), pages 195-198.
    16. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    17. Khatib, Hisham & Difiglio, Carmine, 2016. "Economics of nuclear and renewables," Energy Policy, Elsevier, vol. 96(C), pages 740-750.
    18. Lucheroni, Carlo & Mari, Carlo, 2017. "CO2 volatility impact on energy portfolio choice: A fully stochastic LCOE theory analysis," Applied Energy, Elsevier, vol. 190(C), pages 278-290.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roques, Fabien A., 2008. "Technology choices for new entrants in liberalized markets: The value of operating flexibility and contractual arrangements," Utilities Policy, Elsevier, vol. 16(4), pages 245-253, December.
    2. Geoffrey Rothwell, 2010. "New U.S. Nuclear Generation: 2010-2030," Discussion Papers 09-025, Stanford Institute for Economic Policy Research.
    3. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2014. "Decision-support tool for assessing future nuclear reactor generation portfolios," Energy Economics, Elsevier, vol. 44(C), pages 99-112.
    4. Janne Kettunen, Derek W. Bunn and William Blyth & Derek W. Bunn & William Blyth, 2011. "Investment Propensities under Carbon Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 77-118.
    5. Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 41(C), pages 374-392.
    6. John Foster & Liam Wagner & Phil Wild & Junhua Zhao & Lucas Skoofa & Craig Froome, 2011. "Market and Economic Modelling of the Intelligent Grid: End of Year Report 2009," Energy Economics and Management Group Working Papers 09, School of Economics, University of Queensland, Australia.
    7. Heinzel, Christoph, 2008. "Implications of diverging social and private discount rates for investments in the German power industry: a new case for nuclear energy?," Dresden Discussion Paper Series in Economics 03/08, Technische Universität Dresden, Faculty of Business and Economics, Department of Economics.
    8. Fabien A. Roques, 2011. "Long-term Contracts and Technology Choices in Electricity Markets," Chapters, in: Jean-Michel Glachant & Dominique Finon & Adrien de Hauteclocque (ed.), Competition, Contracts and Electricity Markets, chapter 2, Edward Elgar Publishing.
    9. David M. Newbery & David M. Reiner & Robert A. Ritz, 2018. "When is a carbon price floor desirable?," Working Papers EPRG 1816, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
    11. Michail Chronopoulos, Verena Hagspiel, and Stein-Erik Fleten, 2016. "Stepwise Green Investment under Policy Uncertainty," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Newbery, David, 2016. "Missing money and missing markets: Reliability, capacity auctions and interconnectors," Energy Policy, Elsevier, vol. 94(C), pages 401-410.
    13. María del Carmen Gómez-Ríos & David Juárez-Luna, 2019. "Costo de generación eléctrica incorporando externalidades ambientales: Mezcla óptima de tecnologías de carga base," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 14(3), pages 353-377, Julio - S.
    14. D. Finon & F. Roques, 2008. "Financing Arrangements and Industrial Organisation for New Nuclear Build in Electricity Markets," Competition and Regulation in Network Industries, Intersentia, vol. 9(3), pages 247-282, September.
    15. Hauteclocque, Adrien de & Glachant, Jean-Michel, 2009. "Long-term energy supply contracts in European competition policy: Fuzzy not crazy," Energy Policy, Elsevier, vol. 37(12), pages 5399-5407, December.
    16. Jain, Shashi & Roelofs, Ferry & Oosterlee, Cornelis W., 2013. "Valuing modular nuclear power plants in finite time decision horizon," Energy Economics, Elsevier, vol. 36(C), pages 625-636.
    17. Juárez-Luna, David, 2020. "Beneficios económicos y ambientales de la energía nuclear [Economic and environmental benefits of nuclear energy]," MPRA Paper 98790, University Library of Munich, Germany.
    18. Siddiqui, Afzal & Fleten, Stein-Erik, 2010. "How to proceed with competing alternative energy technologies: A real options analysis," Energy Economics, Elsevier, vol. 32(4), pages 817-830, July.
    19. Sendstad, Lars Hegnes & Chronopoulos, Michail, 2020. "Sequential investment in renewable energy technologies under policy uncertainty," Energy Policy, Elsevier, vol. 137(C).
    20. Blyth, William & Bunn, Derek & Kettunen, Janne & Wilson, Tom, 2009. "Policy interactions, risk and price formation in carbon markets," Energy Policy, Elsevier, vol. 37(12), pages 5192-5207, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:8:p:3849-3864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.