IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v11y2007i2p259-281.html
   My bibliography  Save this article

Embedded energy and total greenhouse gas emissions in final consumptions within Thailand

Author

Listed:
  • Limmeechokchai, Bundit
  • Suksuntornsiri, Pawinee

Abstract

In order to quantify the total Greenhouse Gas (GHG) emissions from different commodities, the contribution of emissions in all subprocess chains has to be considered. In embedded energy analysis, the higher order production processes are usually truncated due to a lack of data. To fill the truncated subprocesses up to infinite process chains, energy intensities and GHG emission factors of various final consumptions in the economy evaluated by the Input-Output Analysis (IOA) must be applied. The direct GHG emissions in final consumptions in Thailand are evaluated by imitating the approach in the energy sector of the revised 1996 Intergovernmental Panel on Climate Change (IPCC) guidelines for national GHG inventories. The indirect energy and indirect emissions are evaluated by using the 1998 Input-Output (I-O) table. Results are presented of emissions in the main process, indirect processes, and on each subprocess chain order. The trend of energy intensity and emission factors of all final consumptions for 1995, 1998, 2001 and 2006 are also presented. Results show that the highest energy intensive sector is the electricity sector where fossil fuel is primarily used, but the highest total GHG emitter is the cement industry where the major sources of the emissions are industrial processes and the combustion of fossil fuels. Implication of the emission factors on electricity generating technologies shows that various cleaner electricity generating technologies, including renewable energy technology, could help in global GHG mitigation.

Suggested Citation

  • Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Embedded energy and total greenhouse gas emissions in final consumptions within Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 259-281, February.
  • Handle: RePEc:eee:rensus:v:11:y:2007:i:2:p:259-281
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(05)00016-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Proops, John LR & Gay, Philip W & Speck, Stefan & Schroder, Thomas, 1996. "The lifetime pollution implications of various types of electricity generation. An input-output analysis," Energy Policy, Elsevier, vol. 24(3), pages 229-237, March.
    2. Lenzen, Manfred, 1998. "Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis," Energy Policy, Elsevier, vol. 26(6), pages 495-506, May.
    3. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    4. Voorspools, Kris R. & Brouwers, Els A. & D'haeseleer, William D., 2000. "Energy content and indirect greenhouse gas emissions embedded in [`]emission-free' power plants: results for the Low Countries," Applied Energy, Elsevier, vol. 67(3), pages 307-330, November.
    5. Manfred Lenzen, 2001. "A Generalized Input-Output Multiplier Calculus for Australia," Economic Systems Research, Taylor & Francis Journals, vol. 13(1), pages 65-92.
    6. Bullard, Clark W. & Herendeen, Robert A., 1975. "The energy cost of goods and services," Energy Policy, Elsevier, vol. 3(4), pages 268-278, December.
    7. Lenzen, M. & Treloar, G., 2002. "Embodied energy in buildings: wood versus concrete--reply to Borjesson and Gustavsson," Energy Policy, Elsevier, vol. 30(3), pages 249-255, February.
    8. Lenzen, Manfred & Dey, Christopher, 2000. "Truncation error in embodied energy analyses of basic iron and steel products," Energy, Elsevier, vol. 25(6), pages 577-585.
    9. van de Vate, Joop F., 1997. "Comparison of energy sources in terms of their full energy chain emission factors of greenhouse gases," Energy Policy, Elsevier, vol. 25(1), pages 1-6, January.
    10. Gagnon, Luc & van de Vate, Joop F., 1997. "Greenhouse gas emissions from hydropower : The state of research in 1996," Energy Policy, Elsevier, vol. 25(1), pages 7-13, January.
    11. Chapman, P. F., 1974. "1. Energy costs: a review of methods," Energy Policy, Elsevier, vol. 2(2), pages 91-103, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    2. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    3. Lenzen, Manfred & Dey, Christopher J., 2002. "Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options," Energy Economics, Elsevier, vol. 24(4), pages 377-403, July.
    4. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.
    5. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    6. Savino, Matteo M. & Manzini, Riccardo & Della Selva, Vincenzo & Accorsi, Riccardo, 2017. "A new model for environmental and economic evaluation of renewable energy systems: The case of wind turbines," Applied Energy, Elsevier, vol. 189(C), pages 739-752.
    7. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    8. Anna Christy & Marwa Elnahass & Jaime Amezaga & Anthony Browne & Oliver Heidrich, 2024. "A dynamic framework to align company climate reporting and action with global climate targets," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 3103-3128, May.
    9. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    10. Lenzen, Manfred & Murray, Shauna A., 2001. "A modified ecological footprint method and its application to Australia," Ecological Economics, Elsevier, vol. 37(2), pages 229-255, May.
    11. Jesper Munksgaard & Manfred Lenzen & Thomas C. Jensen & Lise-Lotte Pade, 2005. "Transport Energy Embodied in Consumer Goods: A Hybrid Life-Cycle Analysis," Energy & Environment, , vol. 16(2), pages 283-301, March.
    12. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    13. Buus, Tomáš, 2017. "Energy efficiency and energy prices: A general mathematical framework," Energy, Elsevier, vol. 139(C), pages 743-754.
    14. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    15. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    16. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    17. Manfred Lenzen, 2001. "A Generalized Input-Output Multiplier Calculus for Australia," Economic Systems Research, Taylor & Francis Journals, vol. 13(1), pages 65-92.
    18. Zhang, L.X. & Wang, C.B. & Bahaj, A.S., 2014. "Carbon emissions by rural energy in China," Renewable Energy, Elsevier, vol. 66(C), pages 641-649.
    19. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    20. Raadal, Hanne Lerche & Gagnon, Luc & Modahl, Ingunn Saur & Hanssen, Ole Jørgen, 2011. "Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3417-3422, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:11:y:2007:i:2:p:259-281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.