IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp24-34.html
   My bibliography  Save this article

Towards a sustainable strategy for road transportation in Australia: The potential contribution of hydrogen

Author

Listed:
  • Maniatopoulos, Paul
  • Andrews, John
  • Shabani, Bahman

Abstract

The use of oil in road transport contributes significantly to global greenhouse gas (GHG) emissions in addition to rapidly depleting this non-renewable resource. Emissions can be greatly reduced by the total replacement of petroleum-based vehicles with electric vehicles using a combination of hydrogen and battery energy storage technologies. This paper analytically reviews the potential reduction in Australian road transport GHG emissions through the total replacement of petroleum-fueled vehicles with hydrogen and battery electrical vehicles by 2050. If electricity for hydrogen production & storage and battery charging is sourced from the national electricity grid, it is estimated that emissions can be reduced by between 56% and 73% in 2050 compared to the Australian Government’s Bureau of Infrastructure, Transport and Regional Economics (BITRE) projections, depending on the current range of government carbon price projections. Emissions can be reduced even further by supplementing grid electricity with standalone renewable electricity dedicated to hydrogen production and storage. It is found that there is more than sufficient renewable energy resources within Australia (particularly solar and wind) to meet the significant increase in the annual electricity generation that would be required to implement this strategy.

Suggested Citation

  • Maniatopoulos, Paul & Andrews, John & Shabani, Bahman, 2015. "Towards a sustainable strategy for road transportation in Australia: The potential contribution of hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 24-34.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:24-34
    DOI: 10.1016/j.rser.2015.07.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115007352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dougherty, William & Kartha, Sivan & Rajan, Chella & Lazarus, Michael & Bailie, Alison & Runkle, Benjamin & Fencl, Amanda, 2009. "Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA," Energy Policy, Elsevier, vol. 37(1), pages 56-67, January.
    2. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    3. Kleijn, Rene & van der Voet, Ester, 2010. "Resource constraints in a hydrogen economy based on renewable energy sources: An exploration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2784-2795, December.
    4. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    5. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    6. N/A, 2013. "The UK economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 225(1), pages 3-3, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assaf, Jihane & Shabani, Bahman, 2019. "A novel hybrid renewable solar energy solution for continuous heat and power supply to standalone-alone applications with ultimate reliability and cost effectiveness," Renewable Energy, Elsevier, vol. 138(C), pages 509-520.
    2. Rahman, Syed Masiur & Khondaker, A.N. & Hasan, Md. Arif & Reza, Imran, 2017. "Greenhouse gas emissions from road transportation in Saudi Arabia - a challenging frontier," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 812-821.
    3. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    4. Fridstrøm, Lasse, 2017. "From innovation to penetration: Calculating the energy transition time lag for motor vehicles," Energy Policy, Elsevier, vol. 108(C), pages 487-502.
    5. Assaf, Jihane & Shabani, Bahman, 2018. "Experimental study of a novel hybrid solar-thermal/PV-hydrogen system: Towards 100% renewable heat and power supply to standalone applications," Energy, Elsevier, vol. 157(C), pages 862-876.
    6. Zhou, Yuekuan, 2022. "Transition towards carbon-neutral districts based on storage techniques and spatiotemporal energy sharing with electrification and hydrogenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Álvarez Fernández, Roberto & Corbera Caraballo, Sergio & Beltrán Cilleruelo, Fernando & Lozano, J. Antonio, 2018. "Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 655-668.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alazemi, Jasem & Andrews, John, 2015. "Automotive hydrogen fuelling stations: An international review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 483-499.
    2. John Andrews & Bahman Shabani, 2014. "The role of hydrogen in a global sustainable energy strategy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(5), pages 474-489, September.
    3. Davidsson, Simon & Grandell, Leena & Wachtmeister, Henrik & Höök, Mikael, 2014. "Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy," Energy Policy, Elsevier, vol. 73(C), pages 767-776.
    4. Tokimatsu, Koji & Wachtmeister, Henrik & McLellan, Benjamin & Davidsson, Simon & Murakami, Shinsuke & Höök, Mikael & Yasuoka, Rieko & Nishio, Masahiro, 2017. "Energy modeling approach to the global energy-mineral nexus: A first look at metal requirements and the 2°C target," Applied Energy, Elsevier, vol. 207(C), pages 494-509.
    5. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    6. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    7. Kevin Ummel & Charles Fant, 2014. "Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies Through Spatiotemporal Modelling," WIDER Working Paper Series wp-2014-121, World Institute for Development Economic Research (UNU-WIDER).
    8. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    9. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    10. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.
    11. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
    12. Peter Lund, 2012. "The European Union challenge: integration of energy, climate, and economic policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 60-68, July.
    13. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    14. Bartlett, Stuart & Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Manso, Pedro & Lehning, Michael, 2018. "Charting the course: A possible route to a fully renewable Swiss power system," Energy, Elsevier, vol. 163(C), pages 942-955.
    15. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    16. Chatzivasileiadis, Spyros & Ernst, Damien & Andersson, Göran, 2013. "The Global Grid," Renewable Energy, Elsevier, vol. 57(C), pages 372-383.
    17. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    18. Jurasz, Jakub & Dąbek, Paweł B. & Kaźmierczak, Bartosz & Kies, Alexander & Wdowikowski, Marcin, 2018. "Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland)," Energy, Elsevier, vol. 161(C), pages 183-192.
    19. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    20. Romanic, Djordje & Parvu, Dan & Refan, Maryam & Hangan, Horia, 2018. "Wind and tornado climatologies and wind resource modelling for a modern development situated in “Tornado Alley”," Renewable Energy, Elsevier, vol. 115(C), pages 97-112.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:24-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.