IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4470-d1401436.html
   My bibliography  Save this article

Harnessing Curtailed Wind-Generated Electricity via Electrical Water Heating Aggregation to Alleviate Energy Poverty: A Use Case in Ireland

Author

Listed:
  • Ciara Ahern

    (Dublin Energy Lab & Built Environment Research and Innovation Centre, Technological University Dublin, D07 EWV4 Dublin, Ireland
    MaREI—SFI Research Centre for Energy, Climate and Marine Research, P43 C573 Cork, Ireland)

  • Ronan Oliver

    (Dublin Energy Lab & Built Environment Research and Innovation Centre, Technological University Dublin, D07 EWV4 Dublin, Ireland)

  • Brian Norton

    (Dublin Energy Lab & Built Environment Research and Innovation Centre, Technological University Dublin, D07 EWV4 Dublin, Ireland
    MaREI—SFI Research Centre for Energy, Climate and Marine Research, P43 C573 Cork, Ireland)

Abstract

Ireland experiences high energy poverty rates alongside surplus wind energy resources. With 77% of Irish households equipped with electrical immersion heaters for domestic hot water (DHW) generation, this study proposes an Electrical Water Heating Aggregation (EWHA) scheme. The scheme allocates surplus wind-generated electricity to provide DHW to fuel-poor households, thereby alleviating energy poverty through harnessing curtailed wind energy. Through a developed wind-generated electricity allocation model and half-hourly data analysis for a weather year, this research assesses the feasibility and economic viability of the EWHA scheme, focusing on the householder as the primary benefactor from the scheme (as opposed to ancillary grid service provision). The results suggest an optimal aggregation size where maximum curtailment and carbon offset coincide with maximum benefits for participants. The findings indicate that fuel-poor households in Ireland could receive a full DHW tank every three weeks using surplus wind energy, harnessing 89% of overnight curtailed wind energy and offsetting 33 MkgCO 2 annually. Moreover, the scheme could potentially save the Irish state approximately EUR 4 million by 2030, increasing to EUR 11 million by 2050, in carbon costs. Overall, this research demonstrates the potential of EWHA schemes to alleviate energy poverty, optimise wind energy utilisation, and contribute significantly to carbon emission reduction targets.

Suggested Citation

  • Ciara Ahern & Ronan Oliver & Brian Norton, 2024. "Harnessing Curtailed Wind-Generated Electricity via Electrical Water Heating Aggregation to Alleviate Energy Poverty: A Use Case in Ireland," Sustainability, MDPI, vol. 16(11), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4470-:d:1401436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    2. Xu, Tingting & Gao, Weijun & Qian, Fanyue & Li, Yanxue, 2022. "The implementation limitation of variable renewable energies and its impacts on the public power grid," Energy, Elsevier, vol. 239(PA).
    3. Agbonaye, Osaru & Keatley, Patrick & Huang, Ye & Ademulegun, Oluwasola O. & Hewitt, Neil, 2021. "Mapping demand flexibility: A spatio-temporal assessment of flexibility needs, opportunities and response potential," Applied Energy, Elsevier, vol. 295(C).
    4. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    5. Bloess, Andreas & Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials," Applied Energy, Elsevier, vol. 212(C), pages 1611-1626.
    6. Zhengwei Qu & Chenglin Xu & Kai Ma & Zongxu Jiao, 2019. "Fuzzy Neural Network Control of Thermostatically Controlled Loads for Demand-Side Frequency Regulation," Energies, MDPI, vol. 12(13), pages 1-15, June.
    7. Jack, M.W. & Suomalainen, K. & Dew, J.J.W. & Eyers, D., 2018. "A minimal simulation of the electricity demand of a domestic hot water cylinder for smart control," Applied Energy, Elsevier, vol. 211(C), pages 104-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2019. "Demand response with heuristic control strategies for modulating heat pumps," Applied Energy, Elsevier, vol. 238(C), pages 1346-1360.
    2. Ahmad Murtaza Ershad & Robert Pietzcker & Falko Ueckerdt & Gunnar Luderer, 2020. "Managing Power Demand from Air Conditioning Benefits Solar PV in India Scenarios for 2040," Energies, MDPI, vol. 13(9), pages 1-19, May.
    3. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    4. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    7. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    8. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    10. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    11. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    12. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    13. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    14. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    15. Minjae Son & Minsoo Kim & Hongseok Kim, 2023. "Sector Coupling and Migration towards Carbon-Neutral Power Systems," Energies, MDPI, vol. 16(4), pages 1-12, February.
    16. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
    17. Odland, Severin & Rhodes, Ekaterina & Corbett, Meghan & Pardy, Aaron, 2023. "What policies do homeowners prefer for building decarbonization and why? An exploration of climate policy support in Canada," Energy Policy, Elsevier, vol. 173(C).
    18. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    19. Vicente Gutiérrez González & Germán Ramos Ruiz & Carlos Fernández Bandera, 2021. "Impact of Actual Weather Datasets for Calibrating White-Box Building Energy Models Base on Monitored Data," Energies, MDPI, vol. 14(4), pages 1-16, February.
    20. Hou, Hui & Xu, Tao & Wu, Xixiu & Wang, Huan & Tang, Aihong & Chen, Yangyang, 2020. "Optimal capacity configuration of the wind-photovoltaic-storage hybrid power system based on gravity energy storage system," Applied Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4470-:d:1401436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.