IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v61y2013icp740-750.html
   My bibliography  Save this article

What is the best practice for benchmark regulation of electricity distribution? Comparison of DEA, SFA and StoNED methods

Author

Listed:
  • Kuosmanen, Timo
  • Saastamoinen, Antti
  • Sipiläinen, Timo

Abstract

Electricity distribution is a natural local monopoly. In many countries, the regulators of this sector apply frontier methods such as data envelopment analysis (DEA) or stochastic frontier analysis (SFA) to estimate the efficient cost of operation. In Finland, a new StoNED method was adopted in 2012. This paper compares DEA, SFA and StoNED in the context of regulating electricity distribution. Using data from Finland, we compare the impacts of methodological choices on cost efficiency estimates and acceptable cost. While the efficiency estimates are highly correlated, the cost targets reveal major differences. In addition, we examine performance of the methods by Monte Carlo simulations. We calibrate the data generation process (DGP) to closely match the empirical data and the model specification of the regulator. We find that the StoNED estimator yields a root mean squared error (RMSE) of 4% with the sample size 100. Precision improves as the sample size increases. The DEA estimator yields an RMSE of approximately 10%, but performance deteriorates as the sample size increases. The SFA estimator has an RMSE of 144%. The poor performance of SFA is due to the wrong functional form and multicollinearity.

Suggested Citation

  • Kuosmanen, Timo & Saastamoinen, Antti & Sipiläinen, Timo, 2013. "What is the best practice for benchmark regulation of electricity distribution? Comparison of DEA, SFA and StoNED methods," Energy Policy, Elsevier, vol. 61(C), pages 740-750.
  • Handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:740-750
    DOI: 10.1016/j.enpol.2013.05.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513004461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.05.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dieter Gstach, 1998. "Another Approach to Data Envelopment Analysis in Noisy Environments: DEA+," Journal of Productivity Analysis, Springer, vol. 9(2), pages 161-176, March.
    2. Azadeh, A. & Ghaderi, S.F. & Omrani, H. & Eivazy, H., 2009. "An integrated DEA-COLS-SFA algorithm for optimization and policy making of electricity distribution units," Energy Policy, Elsevier, vol. 37(7), pages 2605-2618, July.
    3. Jamasb, Tooraj & Nillesen, Paul & Pollitt, Michael, 2004. "Strategic behaviour under regulatory benchmarking," Energy Economics, Elsevier, vol. 26(5), pages 825-843, September.
    4. Jean-Jacques Laffont & Jean Tirole, 1993. "A Theory of Incentives in Procurement and Regulation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262121743, April.
    5. PER AGRELL & Peter Bogetoft & Jørgen Tind, 2005. "DEA and Dynamic Yardstick Competition in Scandinavian Electricity Distribution," Journal of Productivity Analysis, Springer, vol. 23(2), pages 173-201, May.
    6. Andrei Shleifer, 1985. "A Theory of Yardstick Competition," RAND Journal of Economics, The RAND Corporation, vol. 16(3), pages 319-327, Autumn.
    7. Kinnunen, Kaisa, 2006. "Investment incentives: regulation of the Finnish electricity distribution," Energy Policy, Elsevier, vol. 34(7), pages 853-862, May.
    8. Johnson, Andrew L. & Kuosmanen, Timo, 2012. "One-stage and two-stage DEA estimation of the effects of contextual variables," European Journal of Operational Research, Elsevier, vol. 220(2), pages 559-570.
    9. Astrid Cullmann, 2012. "Benchmarking and firm heterogeneity: a latent class analysis for German electricity distribution companies," Empirical Economics, Springer, vol. 42(1), pages 147-169, February.
    10. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    11. Rajiv D. Banker & Ram Natarajan, 2008. "Evaluating Contextual Variables Affecting Productivity Using Data Envelopment Analysis," Operations Research, INFORMS, vol. 56(1), pages 48-58, February.
    12. Efthymios G. Tsionas, 2002. "Stochastic frontier models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 127-147.
    13. Kopsakangas-Savolainen, Maria & Svento, Rauli, 2008. "Estimation of cost-effectiveness of the Finnish electricity distribution utilities," Energy Economics, Elsevier, vol. 30(2), pages 212-229, March.
    14. Andrew Johnson & Timo Kuosmanen, 2011. "One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method," Journal of Productivity Analysis, Springer, vol. 36(2), pages 219-230, October.
    15. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    16. Weyman-Jones, Thomas G., 1991. "Productive efficiency in a regulated industry : The area electricity boards of England and Wales," Energy Economics, Elsevier, vol. 13(2), pages 116-122, April.
    17. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    18. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    19. repec:bla:scandj:v:94:y:1992:i:0:p:s193-205 is not listed on IDEAS
    20. Iglesias, Guillermo & Castellanos, Pablo & Seijas, Amparo, 2010. "Measurement of productive efficiency with frontier methods: A case study for wind farms," Energy Economics, Elsevier, vol. 32(5), pages 1199-1208, September.
    21. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
    22. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    23. Dassler, Thoralf & Parker, David & Saal, David S., 2006. "Methods and trends of performance benchmarking in UK utility regulation," Utilities Policy, Elsevier, vol. 14(3), pages 166-174, September.
    24. Peter Bogetoft & Lars Otto, 2011. "Benchmarking with DEA, SFA, and R," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7961-2, April.
    25. Førsund, Finn R. & Kittelsen, Sverre A. C., 1998. "Productivity development of Norwegian electricity distribution utilities," Resource and Energy Economics, Elsevier, vol. 20(3), pages 207-224, September.
    26. Eskelinen, Juha & Kuosmanen, Timo, 2013. "Intertemporal efficiency analysis of sales teams of a bank: Stochastic semi-nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5163-5175.
    27. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    28. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    29. Jamasb, Tooraj & Nillesen, Paul & Pollitt, Michael, 2003. "Gaming the Regulator: A Survey," The Electricity Journal, Elsevier, vol. 16(10), pages 68-80, December.
    30. Mekaroonreung, Maethee & Johnson, Andrew L., 2012. "Estimating the shadow prices of SO2 and NOx for U.S. coal power plants: A convex nonparametric least squares approach," Energy Economics, Elsevier, vol. 34(3), pages 723-732.
    31. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
    2. Saastamoinen, Antti & Kuosmanen, Timo, 2016. "Quality frontier of electricity distribution: Supply security, best practices, and underground cabling in Finland," Energy Economics, Elsevier, vol. 53(C), pages 281-292.
    3. Agrell, Per J. & Brea-Solís, Humberto, 2017. "Capturing heterogeneity in electricity distribution operations: A critical review of latent class modelling," Energy Policy, Elsevier, vol. 104(C), pages 361-372.
    4. Subal C. Kumbhakar & Gudbrand Lien, 2017. "Yardstick Regulation of Electricity Distribution Disentangling Short-run and Long-run Inefficiencies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    5. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Tian, Zhen-Zhen & Yang, Xiao-Yuan & Wang, Jian-Lin, 2016. "Cost efficiency of electric grid utilities in China: A comparison of estimates from SFA–MLE, SFA–Bayes and StoNED–CNLS," Energy Economics, Elsevier, vol. 55(C), pages 272-283.
    6. Maria Nieswand & Stefan Seifert, 2016. "Operational Conditions in Regulatory Benchmarking Models: A Monte Carlo Analysis," Discussion Papers of DIW Berlin 1585, DIW Berlin, German Institute for Economic Research.
    7. Waidelich, Paul & Haug, Tomas & Wieshammer, Lorenz, 2022. "German efficiency gone wrong: Unintended incentives arising from the gas TSOs’ benchmarking," Energy Policy, Elsevier, vol. 160(C).
    8. Alexander Arévalo S & Víctor Giménez G & Diego Prior J, 2022. "Análisis de eficiencia en educación: una aplicación del método StoNED," Revista Desarrollo y Sociedad, Universidad de los Andes,Facultad de Economía, CEDE, vol. 92(2), pages 45-91, October.
    9. Jamasb, Tooraj & Llorca, Manuel & Khetrapal, Pavan & Thakur, Tripta, 2021. "Institutions and performance of regulated firms: Evidence from electricity distribution in India," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 68-82.
    10. Eskelinen, Juha & Kuosmanen, Timo, 2013. "Intertemporal efficiency analysis of sales teams of a bank: Stochastic semi-nonparametric approach," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5163-5175.
    11. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    12. Andor, Mark A. & Parmeter, Christopher & Sommer, Stephan, 2019. "Combining uncertainty with uncertainty to get certainty? Efficiency analysis for regulation purposes," European Journal of Operational Research, Elsevier, vol. 274(1), pages 240-252.
    13. Cristina Polo & Julián Ramajo & Alejandro Ricci‐Risquete, 2021. "A stochastic semi‐non‐parametric analysis of regional efficiency in the European Union," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(1), pages 7-24, February.
    14. Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2014. "Cost Efficiency Analysis based on The DEA and StoNED Models: Case of Norwegian Electricity Distribution Companies," Discussion Papers 2014/28, Norwegian School of Economics, Department of Business and Management Science.
    15. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    16. Agrell, Per J. & Teusch, Jonas, 2020. "Predictability and strategic behavior under frontier regulation," Energy Policy, Elsevier, vol. 137(C).
    17. Jose Manuel Cordero & Cristina Polo & Javier Salinas-Jiménez, 2021. "Subjective Well-Being and Heterogeneous Contexts: A Cross-National Study Using Semi-Nonparametric Frontier Methods," Journal of Happiness Studies, Springer, vol. 22(2), pages 867-886, February.
    18. Bjørndal, Endre & Bjørndal, Mette & Cullmann, Astrid & Nieswand, Maria, 2018. "Finding the right yardstick: Regulation of electricity networks under heterogeneous environments," European Journal of Operational Research, Elsevier, vol. 265(2), pages 710-722.
    19. Lee, Chia-Yen & Johnson, Andrew L. & Moreno-Centeno, Erick & Kuosmanen, Timo, 2013. "A more efficient algorithm for Convex Nonparametric Least Squares," European Journal of Operational Research, Elsevier, vol. 227(2), pages 391-400.
    20. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:61:y:2013:i:c:p:740-750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.