IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v192y2024ics0301421524002313.html
   My bibliography  Save this article

The impact on climate and emissions of clean household cooking energy policies in Tanzania

Author

Listed:
  • Aamaas, Borgar
  • Grimsby, Lars Kåre

Abstract

The transition to cleaner cooking fuels currently ongoing in many low- and middle-income countries may have benefits for health, but also climate. We have studied the climate implications of the SE4ALL policy goal in Tanzania of “75 percent access to modern cooking solutions by 2030” in which mainly firewood and charcoal are replaced by LPG and electricity. To see the long-term climate benefit, we have estimated the reduction in CO2-equivalent emissions (GWP100) and effect on global temperature until 2100 relative to the baseline for three explorative scenarios with different levels of ambition: baseline growth to nearly complete transition to modern cooking. Due to population growth the energy demand and CO2-eq. emissions increase even in the most ambitious energy transition scenario. We model reduction in global temperature in 2100 relative to the baseline to be between −0.63 and −2.9 milli °C. While we confirm the climate benefit of a transition to cleaner cooking fuels in households, the benefit is smaller than previously thought. This is mainly due to a much weaker radiative forcing of black carbon and somewhat stronger radiative forcing for organic carbon, in the climate parameters from IPCC Sixth Assessment Report.

Suggested Citation

  • Aamaas, Borgar & Grimsby, Lars Kåre, 2024. "The impact on climate and emissions of clean household cooking energy policies in Tanzania," Energy Policy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:enepol:v:192:y:2024:i:c:s0301421524002313
    DOI: 10.1016/j.enpol.2024.114211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524002313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choumert-Nkolo, Johanna & Combes Motel, Pascale & Le Roux, Leonard, 2019. "Stacking up the ladder: A panel data analysis of Tanzanian household energy choices," World Development, Elsevier, vol. 115(C), pages 222-235.
    2. Grieshop, Andrew P. & Marshall, Julian D. & Kandlikar, Milind, 2011. "Health and climate benefits of cookstove replacement options," Energy Policy, Elsevier, vol. 39(12), pages 7530-7542.
    3. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    4. Oliver Stoner & Jessica Lewis & Itzel Lucio Martínez & Sophie Gumy & Theo Economou & Heather Adair-Rohani, 2021. "Household cooking fuel estimates at global and country level for 1990 to 2030," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Robert Bailis & Rudi Drigo & Adrian Ghilardi & Omar Masera, 2015. "The carbon footprint of traditional woodfuels," Nature Climate Change, Nature, vol. 5(3), pages 266-272, March.
    6. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    7. Mwampamba, Tuyeni Heita, 2007. "Has the woodfuel crisis returned? Urban charcoal consumption in Tanzania and its implications to present and future forest availability," Energy Policy, Elsevier, vol. 35(8), pages 4221-4234, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.
    2. Shonali Pachauri & Narasimha D Rao & Colin Cameron, 2018. "Outlook for modern cooking energy access in Central America," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-20, June.
    3. Fang, Yiping & Wei, Yanqiang, 2013. "Climate change adaptation on the Qinghai–Tibetan Plateau: The importance of solar energy utilization for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 508-518.
    4. Olabisi, Michael & Tschirley, David L. & Nyange, David & Awokuse, Titus, 2019. "Energy demand substitution from biomass to imported kerosene: Evidence from Tanzania," Energy Policy, Elsevier, vol. 130(C), pages 243-252.
    5. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    6. Bär, Roger & Reinhard, Jürgen & Ehrensperger, Albrecht & Kiteme, Boniface & Mkunda, Thomas & Wymann von Dach, Susanne, 2021. "The future of charcoal, firewood, and biogas in Kitui County and Kilimanjaro Region: Scenario development for policy support," Energy Policy, Elsevier, vol. 150(C).
    7. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    8. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    9. Gunther Bensch & Jörg Peters, 2020. "One‐Off Subsidies and Long‐Run Adoption—Experimental Evidence on Improved Cooking Stoves in Senegal," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(1), pages 72-90, January.
    10. Yongxia Ding & Wei Qu & Shuwen Niu & Man Liang & Wenli Qiang & Zhenguo Hong, 2016. "Factors Influencing the Spatial Difference in Household Energy Consumption in China," Sustainability, MDPI, vol. 8(12), pages 1-20, December.
    11. Shupler, Matthew & O'Keefe, Mark & Puzzolo, Elisa & Nix, Emily & Anderson de Cuevas, Rachel & Mwitari, James & Gohole, Arthur & Sang, Edna & Čukić, Iva & Menya, Diana & Pope, Daniel, 2021. "Pay-as-you-go liquefied petroleum gas supports sustainable clean cooking in Kenyan informal urban settlement during COVID-19 lockdown," Applied Energy, Elsevier, vol. 292(C).
    12. Clare Hanmer & Charlie Wilson & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2022. "Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level," Energies, MDPI, vol. 15(5), pages 1-31, February.
    13. Jeuland, Marc & Desai, Manish A. & Bair, Elizabeth F. & Mohideen Abdul Cader, Nafeesa & Natesan, Durairaj & Isaac, Wilson Jayakaran & Sambandam, Sankar & Balakrishnan, Kalpana & Thangavel, Gurusamy & , 2023. "A randomized trial of price subsidies for liquefied petroleum cooking gas among low-income households in rural India," World Development Perspectives, Elsevier, vol. 30(C).
    14. Yiran, Gerald Albert Baeribameng & Ablo, Austin Dziwornu & Asem, Freda Elikplim, 2020. "Urbanisation and domestic energy trends: Analysis of household energy consumption patterns in relation to land-use change in peri-urban Accra, Ghana," Land Use Policy, Elsevier, vol. 99(C).
    15. Caleb Wright & Roger Sathre & Shashi Buluswar, 2020. "The global challenge of clean cooking systems," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1219-1240, December.
    16. Shupler, Matthew & Mwitari, James & Gohole, Arthur & Anderson de Cuevas, Rachel & Puzzolo, Elisa & Čukić, Iva & Nix, Emily & Pope, Daniel, 2021. "COVID-19 impacts on household energy & food security in a Kenyan informal settlement: The need for integrated approaches to the SDGs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. van Ruijven, Bas J. & O’Neill, Brian C. & Chateau, Jean, 2015. "Methods for including income distribution in global CGE models for long-term climate change research," Energy Economics, Elsevier, vol. 51(C), pages 530-543.
    18. Deetman, Sebastiaan & Hof, Andries F. & Pfluger, Benjamin & van Vuuren, Detlef P. & Girod, Bastien & van Ruijven, Bas J., 2013. "Deep greenhouse gas emission reductions in Europe: Exploring different options," Energy Policy, Elsevier, vol. 55(C), pages 152-164.
    19. Fydess Khundi-Mkomba, 2021. "Are Urban Rwandan Households using Modern Energy Sources? An Exploration of Cooking Fuel Choices," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 325-332.
    20. Gernaat, David E.H.J. & de Boer, Harmen-Sytze & Dammeier, Louise C. & van Vuuren, Detlef P., 2020. "The role of residential rooftop photovoltaic in long-term energy and climate scenarios," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:192:y:2024:i:c:s0301421524002313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.