IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v192y2024ics0301421524002283.html
   My bibliography  Save this article

Postponing Germany’s nuclear phase-out: A smart move in the European energy crisis?

Author

Listed:
  • Glynos, Dimitrios
  • Scharf, Hendrik

Abstract

In response to the 2022–2023 energy crisis, the German government postponed the phase-out of the last three nuclear plants from the end of 2022 to the 15th of April 2023. Using the ELMOD and ELTRAMOD model cluster, we compare this decision with a counterfactual scenario without German nuclear capacity and derive its implications for the integrated European electricity market. The postponement of the nuclear phase-out reduced gas-fired power generation in Europe by 2.9 TWh, with a reduction of 1.6 TWh in Germany. The substitution of expensive power plants led to a decrease of almost €9 per MWh in average electricity prices in Germany. Furthermore, carbon dioxide emissions in Germany fell by 3.3 Mt. By extending our analysis to scenarios with increased nuclear capacity and different weather years, we illustrate the limitations of large capacity blocks for managing congestion in a decentralized energy system with multiple regional grid bottlenecks.

Suggested Citation

  • Glynos, Dimitrios & Scharf, Hendrik, 2024. "Postponing Germany’s nuclear phase-out: A smart move in the European energy crisis?," Energy Policy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:enepol:v:192:y:2024:i:c:s0301421524002283
    DOI: 10.1016/j.enpol.2024.114208
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524002283
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anke, Carl-Philipp & Möst, Dominik, 2021. "The expansion of RES and the EU ETS – valuable addition or conflicting instruments?," Energy Policy, Elsevier, vol. 150(C).
    2. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    3. Schönheit, David & Hladik, Dirk & Hobbie, Hannes & Möst, Dominik, 2020. "ELMOD documentation: Modeling of flow-based market coupling and congestion management," EconStor Preprints 217278, ZBW - Leibniz Information Centre for Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    2. Sherrell R. Greene, 2020. "How Nuclear Power Can Transform Electric Grid and Critical Infrastructure Resilience," Journal of Critical Infrastructure Policy, John Wiley & Sons, vol. 1(2), pages 37-72, September.
    3. Rodica Loisel & Lionel Lemiale & Silvana Mima & Adrien Bidaud, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Post-Print hal-04568072, HAL.
    4. Cárdenas, Bruno & Ibanez, Roderaid & Rouse, James & Swinfen-Styles, Lawrie & Garvey, Seamus, 2023. "The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK," Renewable Energy, Elsevier, vol. 205(C), pages 256-272.
    5. Loisel, Rodica & Lemiale, Lionel & Mima, Silvana & Bidaud, Adrien, 2022. "Strategies for short-term intermittency in long-term prospective scenarios in the French power system," Energy Policy, Elsevier, vol. 169(C).
    6. Rodríguez-Sarasty, Jesús A. & Debia, Sébastien & Pineau, Pierre-Olivier, 2021. "Deep decarbonization in Northeastern North America: The value of electricity market integration and hydropower," Energy Policy, Elsevier, vol. 152(C).
    7. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    8. Scharf, Hendrik & Möst, Dominik, 2024. "Gas power — How much is needed on the road to carbon neutrality?," Energy Policy, Elsevier, vol. 187(C).
    9. Yuan, Mengyao & Tong, Fan & Duan, Lei & Dowling, Jacqueline A. & Davis, Steven J. & Lewis, Nathan S. & Caldeira, Ken, 2020. "Would firm generators facilitate or deter variable renewable energy in a carbon-free electricity system?," Applied Energy, Elsevier, vol. 279(C).
    10. Ricks, Wilson & Norbeck, Jack & Jenkins, Jesse, 2022. "The value of in-reservoir energy storage for flexible dispatch of geothermal power," Applied Energy, Elsevier, vol. 313(C).
    11. Qiu, Leilei & Liao, Shengyong & Fan, Sui & Sun, Peiwei & Wei, Xinyu, 2023. "Dynamic modelling and control system design of micro-high-temperature gas-cooled reactor with helium brayton cycle," Energy, Elsevier, vol. 278(PB).
    12. El-Emam, Rami S. & Constantin, Alina & Bhattacharyya, Rupsha & Ishaq, Haris & Ricotti, Marco E., 2024. "Nuclear and renewables in multipurpose integrated energy systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    14. Anna Kluba & Robert Field, 2019. "Optimization and Exergy Analysis of Nuclear Heat Storage and Recovery," Energies, MDPI, vol. 12(21), pages 1-18, November.
    15. Young-Kwang Park & Seong-Won Moon & Tong-Seop Kim, 2021. "Advanced Control to Improve the Ramp-Rate of a Gas Turbine: Optimization of Control Schedule," Energies, MDPI, vol. 14(23), pages 1-23, December.
    16. Lingkai Zhu & Wei Zheng & Wenxing Wang & Ziwei Zhong & Junshan Guo & Jiwei Song, 2024. "Study of Load Adjustment Strategy for Nuclear Power Units Focusing on Rankine Cycle: Flexibility–Environment–Economy," Energies, MDPI, vol. 17(6), pages 1-17, March.
    17. Ignacio Mauleón, 2020. "Economic Issues in Deep Low-Carbon Energy Systems," Energies, MDPI, vol. 13(16), pages 1-32, August.
    18. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    19. Crampes, Claude & Renault, Jérôme, 2019. "How many markets for wholesale electricity when supply ispartially flexible?," Energy Economics, Elsevier, vol. 81(C), pages 465-478.
    20. Andriy Lozynskyy & Jacek Kozyra & Andriy Kutsyk & Zbigniew Łukasik & Aldona Kuśmińska-Fijałkowska & Lidiia Kasha & Andriy Lishchuk, 2024. "AVR Fractional-Order Controller Based on Caputo–Fabrizio Fractional Derivatives and Integral Operators," Energies, MDPI, vol. 17(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:192:y:2024:i:c:s0301421524002283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.