IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v190y2024ics0301421524001678.html
   My bibliography  Save this article

The greenhouse gas reduction effect of critical peak pricing for industrial electricity: Evidence from 285 Chinese cities, 2003–2019

Author

Listed:
  • Wang, Kaifeng
  • Zhong, Chunping
  • Yu, Rong

Abstract

This paper assesses the impact of the Pilot of Critical Peak Pricing for Industrial Electricity (PCPPIE) on industrial Greenhouse Gas (GHG) emissions by employing the Difference-in-Differences (DID) methodology. It is found that the cities participating in PCPPIE underwent a significant 11.3% reduction in the GHGs emitted per industrial enterprise. These findings remain robust across various methodologies, including staggered DID estimators, propensity score matching, instrumental variable methods, and spatial econometric regression. The generalized DID analysis shows that a higher critical peak price corresponds to a more substantial decrease in GHG emissions. PCPPIE achieves weaker GHG reduction in higher-administrative level cities but stronger in those with higher industrial share, and the effectiveness of PCPPIE is compromised by cross-regional electricity imports. PCPPIE reduces GHG emission intensity of the power industry and contributes to additional reductions in GHG emissions from other sources by fostering green technological innovation and facilitating energy substitution. The practical significance of this paper is to reveal a richer dynamic mechanism for China's green and sustainable development, indicating that critical peak pricing is a power pricing strategy worthy of strengthening and optimization in the process of China's carbon peak and carbon neutrality.

Suggested Citation

  • Wang, Kaifeng & Zhong, Chunping & Yu, Rong, 2024. "The greenhouse gas reduction effect of critical peak pricing for industrial electricity: Evidence from 285 Chinese cities, 2003–2019," Energy Policy, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:enepol:v:190:y:2024:i:c:s0301421524001678
    DOI: 10.1016/j.enpol.2024.114147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524001678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    2. Silva, Hendrigo Batista da & Santiago, Leonardo P., 2018. "On the trade-off between real-time pricing and the social acceptability costs of demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1513-1521.
    3. Marius Ley, Tobias Stucki, and Martin Woerter, 2016. "The Impact of Energy Prices on Green Innovation," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    4. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    5. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    6. Scarlat, Nicolae & Prussi, Matteo & Padella, Monica, 2022. "Quantification of the carbon intensity of electricity produced and used in Europe," Applied Energy, Elsevier, vol. 305(C).
    7. Harding, Matthew & Kettler, Kyle & Lamarche, Carlos & Ma, Lala, 2023. "The (alleged) environmental and social benefits of dynamic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 574-593.
    8. Jacopo Torriti, 2022. "Household electricity demand, the intrinsic flexibility index and UK wholesale electricity market prices," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(1), pages 7-27, January.
    9. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    10. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    11. Nilsson, Anders & Stoll, Pia & Brandt, Nils, 2017. "Assessing the impact of real-time price visualization on residential electricity consumption, costs, and carbon emissions," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 152-161.
    12. Chen, Lifeng & Wang, Kaifeng, 2022. "The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China's cities: Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 110(C).
    13. Julian D. Hunt & Edward Byers & Yoshihide Wada & Simon Parkinson & David E. H. J. Gernaat & Simon Langan & Detlef P. Vuuren & Keywan Riahi, 2020. "Global resource potential of seasonal pumped hydropower storage for energy and water storage," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    14. Jia, Ruining & Shao, Shuai & Yang, Lili, 2021. "High-speed rail and CO2 emissions in urban China: A spatial difference-in-differences approach," Energy Economics, Elsevier, vol. 99(C).
    15. Zhang, Sufang & Jiao, Yiqian & Chen, Wenjun, 2017. "Demand-side management (DSM) in the context of China's on-going power sector reform," Energy Policy, Elsevier, vol. 100(C), pages 1-8.
    16. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Hossain, Mohammad Razib & Rej, Soumen & Awan, Ashar & Bandyopadhyay, Arunava & Islam, Md Sayemul & Das, Narasingha & Hossain, Md Emran, 2023. "Natural resource dependency and environmental sustainability under N-shaped EKC: The curious case of India," Resources Policy, Elsevier, vol. 80(C).
    18. Ming, Zeng & Li, Shi & Yanying, He, 2015. "Status, challenges and countermeasures of demand-side management development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 284-294.
    19. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    20. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lifeng & Wang, Kaifeng, 2022. "The spatial spillover effect of low-carbon city pilot scheme on green efficiency in China's cities: Evidence from a quasi-natural experiment," Energy Economics, Elsevier, vol. 110(C).
    2. Feng, Siyu & Lazkano, Itziar, 2022. "Innovation trends in electricity storage: What drives global innovation?," Energy Policy, Elsevier, vol. 167(C).
    3. Ali, Muhammad Rizwan & Shafiq, Muhammad, 2021. "Revealing expert perspectives on challenges to electricity Demand-Side Management in Pakistan: An application of Q-Methodology," Utilities Policy, Elsevier, vol. 70(C).
    4. Chai, Jian & Tian, Lingyue & Jia, Ruining, 2023. "New energy demonstration city, spatial spillover and carbon emission efficiency: Evidence from China's quasi-natural experiment," Energy Policy, Elsevier, vol. 173(C).
    5. Shuchen Niu & Xiang Luo & Tiantian Yang & Guodong Lin & Chongming Li, 2023. "Does the Low-Carbon City Pilot Policy Improve the Urban Land Green Use Efficiency?—Investigation Based on Multi-Period Difference-in-Differences Model," IJERPH, MDPI, vol. 20(3), pages 1-21, February.
    6. Liu, Mengsha & Jiang, Yan & Wei, Xiaokun & Ruan, Qingsong & Lv, Dayong, 2023. "Effect of high-speed rail on entrepreneurial activities: Evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    7. Weng, Chunfei & Huang, Jingong & Greenwood-Nimmo, Matthew, 2023. "The effect of clean energy investment on CO2 emissions: Insights from a Spatial Durbin Model," Energy Economics, Elsevier, vol. 126(C).
    8. Li, Kai & Yan, Yaxue & Zhang, Xiaoling, 2021. "Carbon-abatement policies, investment preferences, and directed technological change: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    9. Wang, Xinru & Long, Ruyin & Sun, Qingqing & Chen, Hong & Jiang, Shiyan & Wang, Yujie & Li, Qianwen & Yang, Shuhan, 2024. "Spatial spillover effects and driving mechanisms of carbon emission reduction in new energy demonstration cities," Applied Energy, Elsevier, vol. 357(C).
    10. Wang, Zekai & Ding, Tao & Jia, Wenhao & Huang, Can & Mu, Chenggang & Qu, Ming & Shahidehpour, Mohammad & Yang, Yongheng & Blaabjerg, Frede & Li, Li & Wang, Kang & Chi, Fangde, 2022. "Multi-stage stochastic programming for resilient integrated electricity and natural gas distribution systems against typhoon natural disaster attacks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Kaifeng Wang & Chunping Zhong & Lifeng Chen & Yunmin Zeng, 2023. "The spatial spillover effect of China’s pollutants emission trading pilot scheme on green efficiency: evidence from 285 China’s cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8137-8163, August.
    12. Yan, Zheming & Yu, Ying & Du, Kerui & Zhang, Ning, 2024. "How does environmental regulation promote green technology innovation? Evidence from China's total emission control policy," Ecological Economics, Elsevier, vol. 219(C).
    13. Seier, Maximilian & Schebek, Liselotte, 2017. "Model-based investigation of residual load smoothing through dynamic electricity purchase: The case of wastewater treatment plants in Germany," Applied Energy, Elsevier, vol. 205(C), pages 210-224.
    14. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    15. Burda, Michael C. & Zessner-Spitzenberg, Leopold, 2024. "Greenhouse Gas Mitigation and Price-Driven Growth in a Solow-Swan Economy with an Environmental Limit," IZA Discussion Papers 16771, Institute of Labor Economics (IZA).
    16. repec:rri:wpaper:201303 is not listed on IDEAS
    17. Camacho, Carmen & Hassan, Waleed, 2023. "The dynamics of revolution: Discrimination, social unrest and the optimal timing of revolution," Economic Modelling, Elsevier, vol. 128(C).
    18. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    19. Hunt, Julian David & Nascimento, Andreas & Zakeri, Behnam & Barbosa, Paulo Sérgio Franco, 2022. "Hydrogen Deep Ocean Link: a global sustainable interconnected energy grid," Energy, Elsevier, vol. 249(C).
    20. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    21. Lamberova, Natalia, 2021. "The puzzling politics of R&D: Signaling competence through risky projects," Journal of Comparative Economics, Elsevier, vol. 49(3), pages 801-818.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:190:y:2024:i:c:s0301421524001678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.