IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p369-377.html
   My bibliography  Save this article

Energy structure change and carbon emission trends in China

Author

Listed:
  • Wang, Zheng
  • Zhu, Yanshuo
  • Zhu, Yongbin
  • Shi, Ying

Abstract

This article builds a hybrid energy model based on energy demand and energy supply equilibrium, along with the objective of minimizing costs. To estimate the differences between various energy technologies that impact the economy, efficiency and carbon emissions, we simulated the structure of China's future energy roadmap and trends of carbon emissions. The simulation results show that if international oil prices decline and China's economic growth appropriately deviates from the golden growth, carbon emissions can reach a peak in 2025, relying mainly on nuclear energy to substitute for coal. In other words, the peak of carbon emissions in China can technically be achieved by 2025, but certain economic losses will occur. With the objective of costs minimization, the results indicate that after 2025, the proportion of coal in the country's total energy supply will rapidly decline. However, in 2030 the proportion of non-fossil energy in the country's primary energy supply will remain slightly lower than 20%.

Suggested Citation

  • Wang, Zheng & Zhu, Yanshuo & Zhu, Yongbin & Shi, Ying, 2016. "Energy structure change and carbon emission trends in China," Energy, Elsevier, vol. 115(P1), pages 369-377.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:369-377
    DOI: 10.1016/j.energy.2016.08.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216311781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.08.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    2. Nordhaus, William D, 1993. "Optimal Greenhouse-Gas Reductions and Tax Policy in the "Dice" Model," American Economic Review, American Economic Association, vol. 83(2), pages 313-317, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    2. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    3. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    4. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Yunyun Wu & Xiaochun Li, 2024. "Industrial technological progress, technology spillover, and the environment in a dual agricultural economy," International Journal of Economic Theory, The International Society for Economic Theory, vol. 20(2), pages 243-266, June.
    6. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    7. Harborne, Paul & Hendry, Chris, 2009. "Pathways to commercial wind power in the US, Europe and Japan: The role of demonstration projects and field trials in the innovation process," Energy Policy, Elsevier, vol. 37(9), pages 3580-3595, September.
    8. Martinsson, Gustav & Sajtos, László & Strömberg, Per & Thomann, Christian, 2022. "Carbon Pricing and Firm-Level CO2 Abatement: Evidence from a Quarter of a Century-Long Panel," Misum Working Paper Series 2022-10, Stockholm School of Economics, Mistra Center for Sustainable Markets (Misum).
    9. Patrick Criqui & Denise Cavard, 2004. "Economic approach to climate policies and stakes of international negotiations," Post-Print halshs-00003793, HAL.
    10. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
    11. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2009. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution Learning," Working Papers 2009-10, University of Alberta, Department of Economics.
    12. Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.
    13. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    14. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.
    15. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    16. Alfredo Sirkis & J.C Hourcade & Dipak Dasgupta & Rogério Studart & Kevin Gallagher & B Perrissin-Fabert & José Eli da Veiga & Etienne Espagne & Michele Stua & Michel Aglietta, 2015. "Moving the trillions a debate on positive pricing of mitigation actions," Post-Print hal-01692638, HAL.
    17. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
    18. Li, Zhe & Sun, Jianfei, 2015. "Emission taxes and standards in a general equilibrium with entry and exit," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 34-60.
    19. Moon, Hee Seung & Song, Yong Hyun & Lee, Ji Woo & Hong, Sanghyun & Kim, Eunsung & Kim, Seung Wan, 2024. "Implementation cost of net zero electricity system: Analysis based on Korean national target," Energy Policy, Elsevier, vol. 188(C).
    20. Chen, Huayi & Ma, Tieju, 2017. "Optimizing systematic technology adoption with heterogeneous agents," European Journal of Operational Research, Elsevier, vol. 257(1), pages 287-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:369-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.