IDEAS home Printed from https://ideas.repec.org/a/spr/jecstr/v7y2018i1d10.1186_s40008-018-0119-x.html
   My bibliography  Save this article

A meta-stochastic frontier analysis for energy efficiency of regions in Japan

Author

Listed:
  • Satoshi Honma

    (Tokai University)

  • Jin-Li Hu

    (National Chiao Tung University)

Abstract

This paper measures the metafrontier total-factor energy efficiency (TFEE) of 47 regions in Japan for the period 1996–2008, using the stochastic frontier analysis (SFA). The two-step output-oriented SFA approach by Huang et al. (J Prod Anal 42:241–254, 2014) is followed but converted into a two-step input-oriented SFA approach. The metafrontier TFEE is defined as a product of the group TFEE and the technological gap ratio (TGR). The mean group TFEE is smaller than the mean TGR for both the groups, which shows that the energy inefficiency in Japanese regions with respect to the metafrontier comes from primarily operating inefficiency, rather technology gap. The mean metafrontier TFEE of the metropolitan areas is smaller than that of rural areas, implying that the former is energy inefficient than the latter. The mean TGR of the metropolitan areas is also smaller than that of rural areas, implying that many Japanese regions with major cities are far below the metafrontier and still have much room for energy savings.

Suggested Citation

  • Satoshi Honma & Jin-Li Hu, 2018. "A meta-stochastic frontier analysis for energy efficiency of regions in Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-16, December.
  • Handle: RePEc:spr:jecstr:v:7:y:2018:i:1:d:10.1186_s40008-018-0119-x
    DOI: 10.1186/s40008-018-0119-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40008-018-0119-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40008-018-0119-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    2. Zhou, P. & Ang, B.W. & Zhou, D.Q., 2012. "Measuring economy-wide energy efficiency performance: A parametric frontier approach," Applied Energy, Elsevier, vol. 90(1), pages 196-200.
    3. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    4. Satoshi Honma & Jin-Li Hu, 2011. "Industry-level Total-factor Energy Efficiency in Developed Countries," Discussion Papers 51, Kyushu Sangyo University, Faculty of Economics.
    5. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    6. Johnstone, Nick & Managi, Shunsuke & Rodríguez, Miguel Cárdenas & Haščič, Ivan & Fujii, Hidemichi & Souchier, Martin, 2017. "Environmental policy design, innovation and efficiency gains in electricity generation," Energy Economics, Elsevier, vol. 63(C), pages 106-115.
    7. Casler, Stephen & Hannon, Bruce, 1989. "Readjustment potentials in industrial energy efficiency and structure," Journal of Environmental Economics and Management, Elsevier, vol. 17(1), pages 93-108, July.
    8. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
    9. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    10. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    11. Yi-Ming Wei & Hua Liao (ed.), 2016. "Energy Economics: Energy Efficiency in China," CEEP-BIT Books, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology, number b5.
    12. Honma, Satoshi & Hu, Jin-Li, 2008. "Total-factor energy efficiency of regions in Japan," Energy Policy, Elsevier, vol. 36(2), pages 821-833, February.
    13. Ana Medina & Ángeles Cámara & José-Ramón Monrobel, 2016. "Measuring the Socioeconomic and Environmental Effects of Energy Efficiency Investments for a More Sustainable Spanish Economy," Sustainability, MDPI, vol. 8(10), pages 1-21, October.
    14. Hayami, Yujiro & Ruttan, Vernon W, 1970. "Agricultural Productivity Differences Among Countries," American Economic Review, American Economic Association, vol. 60(5), pages 895-911, December.
    15. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2015. "Substitute or complement? Assessing renewable and nonrenewable energy in OECD countries," Applied Economics, Taylor & Francis Journals, vol. 47(14), pages 1438-1459, March.
    16. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    17. George E. Battese & D. S. Prasada Rao, 2002. "Technology Gap, Efficiency, and a Stochastic Metafrontier Function," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 1(2), pages 87-93, August.
    18. Fang, Chin-Yi & Hu, Jin-Li & Lou, Tze-Kai, 2013. "Environment-adjusted total-factor energy efficiency of Taiwan's service sectors," Energy Policy, Elsevier, vol. 63(C), pages 1160-1168.
    19. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    20. Tamaki, Tetsuya & Shin, Kong Joo & Nakamura, Hiroki & Fujii, Hidemichi & Managi, Shunsuke, 2018. "Shadow prices and production inefficiency of mineral resources," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 111-121.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kozo Harimaya & Koichi Kagitani, 2022. "Efficiency, and economies of scale and scope in Japanese agricultural cooperatives," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 11(1), pages 1-19, December.
    2. María Molinos-Senante & Alexandros Maziotis, 2019. "Cost Efficiency of English and Welsh Water Companies: a Meta-Stochastic Frontier Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3041-3055, July.
    3. Akihiro Otsuka, 2023. "Stochastic demand frontier analysis of residential electricity demands in Japan," Asia-Pacific Journal of Regional Science, Springer, vol. 7(1), pages 179-195, March.
    4. Ying Li & Hongyi Cen & Tai-Yu Lin & Yung-ho Chiu, 2021. "Undesirable Epsilon-Based Model DEA Application for Chinese Natural Disaster Mitigation Efficiency," SAGE Open, , vol. 11(3), pages 21582440211, August.
    5. Liang Chun Lu & Yung-ho Chiu & Shih-Yung Chiu & Tzu-Han Chang, 2022. "Do Forests help environmental development of Cities in China?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6602-6629, May.
    6. Wirat Krasachat, 2023. "The Effect of Good Agricultural Practices on the Technical Efficiency of Chili Production in Thailand," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    7. Ouyang, Xiaoling & Chen, Jiaqi & Du, Kerui, 2021. "Energy efficiency performance of the industrial sector: From the perspective of technological gap in different regions in China," Energy, Elsevier, vol. 214(C).
    8. Elizabeth Ahikiriza & Jef Meensel & Xavier Gellynck & Ludwig Lauwers, 2021. "Heterogeneity in frontier analysis: does it matter for benchmarking farms?," Journal of Productivity Analysis, Springer, vol. 56(2), pages 69-84, December.
    9. Giri, Prashant & Sharma, Tarun, 2024. "Market instrument for the first fuel and its role in decarbonizing Indian industrial production," Energy Policy, Elsevier, vol. 190(C).
    10. Masayuki Shimizu & Oscar Tiku, 2023. "Evaluation of environmental energy efficiency and its influencing factors: a prefecture-level analysis of Japanese manufacturing industries," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 12(1), pages 1-26, December.
    11. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2022. "Innovation efficiency and technology heterogeneity within China's new energy vehicle industry: A two-stage NSBM approach embedded in a three-hierarchy meta-frontier framework," Energy Policy, Elsevier, vol. 161(C).
    12. Haider, Salman & Danish, Mohd Shadab & Sharma, Ruchi, 2019. "Assessing energy efficiency of Indian paper industry and influencing factors: A slack-based firm-level analysis," Energy Economics, Elsevier, vol. 81(C), pages 454-464.
    13. Tetyana Vasylieva & Vladyslav Pavlyk & Yuriy Bilan & Grzegorz Mentel & Marcin Rabe, 2021. "Assessment of Energy Efficiency Gaps: The Case for Ukraine," Energies, MDPI, vol. 14(5), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
    2. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    3. Wang, Qunwei & Zhao, Zengyao & Zhou, Peng & Zhou, Dequn, 2013. "Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 35(C), pages 283-289.
    4. Xiangyu Teng & Danting Lu & Yung-ho Chiu, 2019. "Emission Reduction and Energy Performance Improvement with Different Regional Treatment Intensity in China," Energies, MDPI, vol. 12(2), pages 1-18, January.
    5. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    6. Thanh Pham Thien Nguyen & Son Hong Nghiem & Eduardo Roca & Parmendra Sharma, 2016. "Efficiency, innovation and competition: evidence from Vietnam, China and India," Empirical Economics, Springer, vol. 51(3), pages 1235-1259, November.
    7. Zhang, Hui & Zhou, Peng & Sun, Xiumei & Ni, Guanqun, 2024. "Disparities in energy efficiency and its determinants in Chinese cities: From the perspective of heterogeneity," Energy, Elsevier, vol. 289(C).
    8. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    9. Napolitano, Oreste & Foresti, Pasquale & Kounetas, Konstantinos & Spagnolo, Nicola, 2023. "The impact of energy, renewable and CO2 emissions efficiency on countries’ productivity," Energy Economics, Elsevier, vol. 125(C).
    10. Khanal, Uttam & Wilson, Clevo & Shankar, Sriram & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farm performance analysis: Technical efficiencies and technology gaps of Nepalese farmers in different agro-ecological regions," Land Use Policy, Elsevier, vol. 76(C), pages 645-653.
    11. Lizhan Cao & Zhongying Qi & Junxia Ren, 2017. "China’s Industrial Total-Factor Energy Productivity Growth at Sub-Industry Level: A Two-Step Stochastic Metafrontier Malmquist Index Approach," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    12. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    13. Fei, Rilong & Lin, Boqiang, 2016. "Energy efficiency and production technology heterogeneity in China's agricultural sector: A meta-frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 109(C), pages 25-34.
    14. Kounetas, Konstantinos & Stergiou, Eirini, 2019. "Technology heterogeneity in European industries' energy efficiency performance. The role of climate, greenhouse gases, path dependence and energy mix," MPRA Paper 92314, University Library of Munich, Germany.
    15. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Yan, Ming-Zhe & Wang, Jian-Lin & Xie, Bai-Chen, 2019. "Which provincial administrative regions in China should reduce their coal consumption? An environmental energy input requirement function based analysis," Energy Policy, Elsevier, vol. 127(C), pages 51-63.
    16. Wen-Ling Hsiao & Jin-Li Hu & Chan Hsiao & Ming-Chung Chang, 2018. "Energy Efficiency of the Baltic Sea Countries: An Application of Stochastic Frontier Analysis," Energies, MDPI, vol. 12(1), pages 1-11, December.
    17. Hongzhou Li & Andrea Appolloni & Yijie Dou & Vincenzo Basile & Maria Kopsakangas-Savolainen, 2024. "A parametric method to estimate environmental energy efficiency with non-radial adjustment: an application to China," Annals of Operations Research, Springer, vol. 342(3), pages 1379-1405, November.
    18. Nela Vlahinic Lenz & Alemka egota & Dario Maradin, 2018. "Total-factor Energy Efficiency in EU: Do Environmental Impacts Matter?," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 92-96.
    19. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    20. Ze Tian & Fang-Rong Ren & Qin-Wen Xiao & Yung-Ho Chiu & Tai-Yu Lin, 2019. "Cross-Regional Comparative Study on Carbon Emission Efficiency of China’s Yangtze River Economic Belt Based on the Meta-Frontier," IJERPH, MDPI, vol. 16(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecstr:v:7:y:2018:i:1:d:10.1186_s40008-018-0119-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.