IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v159y2021ics030142152100505x.html
   My bibliography  Save this article

CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe

Author

Listed:
  • Breed, Annelis K.
  • Speth, Daniel
  • Plötz, Patrick

Abstract

Fuel economy regulation is a powerful instrument to reduce CO2 emissions of vehicles and has recently been extended to heavy-duty vehicles. In Europe, truck manufacturers are required to reduce the CO2 emissions of newly sold vehicles by 30% until 2030 compared to 2019/2020. Accordingly, several manufacturers have announced the introduction of zero emission vehicles (ZEVs) such as battery electric or fuel cell trucks. However, the sales shares of zero emission trucks to meet the targets have not been analyzed in the literature yet. Here, we derive sales share scenarios for zero emission trucks in Europe based on emissions reduction options and their associated costs. We find that manufacturers will require at least 4–22% of their newly sold heavy-duty vehicles to be zero emission in 2030, depending on their strategy to improve their diesel trucks. This implies a stock share of 2–11% for ZEV trucks in Europe in 2030. Yet, high sales shares for ZEVs and the super credits granted by the regulation allow manufacturers to meet their target with little CO2 reduction in the conventional fleet leading to low actual emission reduction.

Suggested Citation

  • Breed, Annelis K. & Speth, Daniel & Plötz, Patrick, 2021. "CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe," Energy Policy, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:enepol:v:159:y:2021:i:c:s030142152100505x
    DOI: 10.1016/j.enpol.2021.112640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152100505X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siskos, Pelopidas & Moysoglou, Yannis, 2019. "Assessing the impacts of setting CO2 emission targets on truck manufacturers: A model implementation and application for the EU," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 123-138.
    2. Fritz, Markus & Plötz, Patrick & Funke, Simon A., 2019. "The impact of ambitious fuel economy standards on the market uptake of electric vehicles and specific CO2 emissions," Energy Policy, Elsevier, vol. 135(C).
    3. Cong, Rong-Gang & Caro, Dario & Thomsen, Marianne, 2017. "Is it beneficial to use biogas in the Danish transport sector?–An environmental-economic analysis," MPRA Paper 112291, University Library of Munich, Germany.
    4. Plötz, Patrick & Gnann, Till & Jochem, Patrick & Yilmaz, Hasan Ümitcan & Kaschub, Thomas, 2019. "Impact of electric trucks powered by overhead lines on the European electricity system and CO2 emissions," Energy Policy, Elsevier, vol. 130(C), pages 32-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Andrade de Carvalho & André de Castro & Gutemberg Hespanha Brasil & Paulo Antonio de Souza & Andrés Z. Mendiburu, 2022. "CO 2 Emission Factors and Carbon Losses for Off-Road Mining Trucks," Energies, MDPI, vol. 15(7), pages 1-17, April.
    2. Li, Chao & Yi, Yongxi & Zhang, Aoxiang & Chen, Biao, 2023. "Fuel consumption-reduction investment decisions and coordination contracts in fuel vehicle supply chains: A dynamic analysis," Energy Economics, Elsevier, vol. 125(C).
    3. Remzi Can Samsun & Michael Rex & Laurent Antoni & Detlef Stolten, 2022. "Deployment of Fuel Cell Vehicles and Hydrogen Refueling Station Infrastructure: A Global Overview and Perspectives," Energies, MDPI, vol. 15(14), pages 1-34, July.
    4. Jakob Schneider & Olaf Teichert & Maximilian Zähringer & Korbinian Götz & Markus Lienkamp, 2023. "Spoilt for Choice: User-Centric Choice of Battery Size and Chemistry for Battery-Electric Long-Haul Trucks," Energies, MDPI, vol. 17(1), pages 1-20, December.
    5. Ovaere, Marten & Proost, Stef, 2022. "Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package," Energy Policy, Elsevier, vol. 168(C).
    6. Teng, Fei & Zhang, Qi & Chen, Siyuan & Wang, Ge & Huang, Zhenyue & Wang, Lu, 2024. "Comprehensive effects of policy mixes on the diffusion of heavy-duty hydrogen fuel cell electric trucks in China considering technology learning," Energy Policy, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    2. Korberg, Andrei David & Skov, Iva Ridjan & Mathiesen, Brian Vad, 2020. "The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark," Energy, Elsevier, vol. 199(C).
    3. Rose, Philipp & Wietschel, Martin & Gnann, Till, 2020. "Wie könnte ein Tankstellenaufbau für Brennstoffzellen-Lkw in Deutschland aussehen?," Working Papers "Sustainability and Innovation" S09/2020, Fraunhofer Institute for Systems and Innovation Research (ISI).
    4. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    5. Börjesson, Maria & Proost, Stef, 2024. "The costs and benefits of e-roads versus battery-only trucks when costs are uncertain," Working Papers 2024:3, Swedish National Road & Transport Research Institute (VTI).
    6. Cong, Rong-Gang & Stefaniak, Irena & Madsen, Bjarne & Dalgaard, Tommy & Jensen, Jørgen Dejgård & Nainggolan, Doan & Termansen, Mette, 2017. "Where to implement local biotech innovations? A framework for multi-scale socio-economic and environmental impact assessment of Green Bio-Refineries," Land Use Policy, Elsevier, vol. 68(C), pages 141-151.
    7. Azra Ghobadi & Mohammad Fallah & Reza Tavakkoli-Moghaddam & Hamed Kazemipoor, 2022. "A Fuzzy Two-Echelon Model to Optimize Energy Consumption in an Urban Logistics Network with Electric Vehicles," Sustainability, MDPI, vol. 14(21), pages 1-31, October.
    8. Haddad, Diala & Konstantinou, Theodora & Aliprantis, Dionysios & Gkritza, Konstantina & Pekarek, Steven & Haddock, John, 2022. "Analysis of the financial viability of high-powered electric roadways: A case study for the state of Indiana," Energy Policy, Elsevier, vol. 171(C).
    9. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    10. Yongfei Li & Jiangtao Wang & Bin Wang & Clark Luo, 2024. "A Study of Quantum Game for Low-Carbon Transportation with Government Subsidies and Penalties," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
    11. Colovic, Aleksandra & Marinelli, Mario & Ottomanelli, Michele, 2024. "Towards the electrification of freight transport: A network design model for assessing the adoption of eHighways," Transport Policy, Elsevier, vol. 150(C), pages 106-120.
    12. Levent Özlü & Dilay Çelebi, 2024. "Electrifying Freight: Modeling the Decision-Making Process for Battery Electric Truck Procurement," Sustainability, MDPI, vol. 16(9), pages 1-23, April.
    13. Obal, Thalita Monteiro & de Souza, Jovani Taveira & de Jesus, Rômulo Henrique Gomes & de Francisco, Antonio Carlos, 2023. "Biogascluster: A clustering algorithm to identify potential partnerships between agribusiness properties," Renewable Energy, Elsevier, vol. 206(C), pages 982-993.
    14. Su, Bosheng & Han, Wei & He, Hongzhou & Jin, Hongguang & Chen, Zhijie & Zheng, Jieqing & Yang, Shaohui & Zhang, Xiaodong, 2020. "Using moderate carbon dioxide separation to improve the performance of solar-driven biogas reforming process," Applied Energy, Elsevier, vol. 279(C).
    15. Niklas Jakobsson & Elias Hartvigsson & Maria Taljegard & Filip Johnsson, 2023. "Substation Placement for Electric Road Systems," Energies, MDPI, vol. 16(10), pages 1-19, May.
    16. Langenmayr, Uwe & Ruppert, Manuel, 2023. "Renewable origin, additionality, temporal and geographical correlation – eFuels production in Germany under the RED II regime," Energy Policy, Elsevier, vol. 183(C).
    17. Nils Boysen & Dirk Briskorn & Stefan Schwerdfeger, 2023. "How to charge while driving: scheduling point-to-point deliveries of an electric vehicle under overhead wiring," Journal of Scheduling, Springer, vol. 26(1), pages 19-41, February.
    18. Li, Junqiang & Ren, Hao & Wang, Mingyue, 2021. "How to escape the dilemma of charging infrastructure construction? A multi-sectorial stochastic evolutionary game model," Energy, Elsevier, vol. 231(C).
    19. Philipp Kluschke & Fabian Neumann, 2019. "Interaction of a Hydrogen Refueling Station Network for Heavy-Duty Vehicles and the Power System in Germany for 2050," Papers 1908.10119, arXiv.org.
    20. Li, Chao & Yi, Yongxi & Zhang, Aoxiang & Chen, Biao, 2023. "Fuel consumption-reduction investment decisions and coordination contracts in fuel vehicle supply chains: A dynamic analysis," Energy Economics, Elsevier, vol. 125(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:159:y:2021:i:c:s030142152100505x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.