IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v154y2021ics0301421521001828.html
   My bibliography  Save this article

Solar for all: A framework to deliver inclusive and environmentally sustainable solar irrigation for smallholder agriculture

Author

Listed:
  • Lefore, Nicole
  • Closas, Alvar
  • Schmitter, Petra

Abstract

Worldwide, off-grid solar photovoltaic irrigation is currently being developed with the expectation that it will help secure water access to increase food production, reduce fuel-based carbon emissions and energy costs, and increase human resilience to climate change. In developing countries across the Middle East and North Africa, South East Asia and Sub-Saharan Africa, the adoption of solar technology in agriculture to lift groundwater is rapidly expanding, following decreases in pump costs, economic incentives, and development partner initiatives. Solar irrigation potentially provides a cost-effective and sustainable energy source to secure food production and sustain livelihoods in line with multiple Sustainable Development Goals, but achieving such potential requires improved policies and institutions to coordinate across numerous stakeholders, objectives, and approaches. This paper uses cases and observations from across regions to propose a framework to support policy, regulation, and monitoring for environmentally sustainable and socio-economically inclusive solar irrigation investments. While not exhaustive, the components seek to address the intersection of energy, water and food security, as well as social equity. The paper emphasizes the need for an understanding of how solar irrigation can be scaled to be both accessible for smallholder farmers and environmentally sustainable.

Suggested Citation

  • Lefore, Nicole & Closas, Alvar & Schmitter, Petra, 2021. "Solar for all: A framework to deliver inclusive and environmentally sustainable solar irrigation for smallholder agriculture," Energy Policy, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:enepol:v:154:y:2021:i:c:s0301421521001828
    DOI: 10.1016/j.enpol.2021.112313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421521001828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2021.112313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    2. Mahmoud, Elham & el Nather, Hoseen, 2003. "Renewable energy and sustainable developments in Egypt: photovoltaic water pumping in remote areas," Applied Energy, Elsevier, vol. 74(1-2), pages 141-147, January.
    3. Brunet, Carole & Savadogo, Oumarou & Baptiste, Pierre & Bouchard, Michel A., 2018. "Shedding some light on photovoltaic solar energy in Africa – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 325-342.
    4. Szabó, S. & Bódis, K. & Huld, T. & Moner-Girona, M., 2013. "Sustainable energy planning: Leapfrogging the energy poverty gap in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 500-509.
    5. Mario Pagliaro, 2020. "Father Verspieren and Mali Aqua Viva: Lessons Learned from Fighting Drought and Poverty with Photovoltaic Solar Energy in Africa," Sustainability, MDPI, vol. 12(8), pages 1-8, April.
    6. Namrata Chindarkar & R. Quentin Grafton, 2019. "India's depleting groundwater: When science meets policy," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 6(1), pages 108-124, January.
    7. Schmitter, Petra & Kibret, K. S. & Lefore, Nicole & Barron, Jennie, 2018. "Suitability mapping framework for solar photovoltaic pumps for smallholder farmers in sub-Saharan Africa," Papers published in Journals (Open Access), International Water Management Institute, pages 94:41-9457..
    8. Amankwah-Amoah, Joseph, 2015. "Solar energy in sub-Saharan Africa: The challenges and opportunities of technological leapfrogging," MPRA Paper 88627, University Library of Munich, Germany.
    9. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    10. Lefore, N. & Giordano, Meredith & Ringler, C. & Barron, J., "undated". "Sustainable and equitable growth in farmer-led irrigation in Sub-Saharan Africa: what will it take?," Papers published in Journals (Open Access) H049101, International Water Management Institute.
    11. Olsson, Alexander & Campana, Pietro Elia & Lind, Mårten & Yan, Jinyue, 2014. "Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands," Applied Energy, Elsevier, vol. 136(C), pages 1145-1154.
    12. Balasubramanya, Soumya & Stifel, David, 2020. "Viewpoint: Water, agriculture & poverty in an era of climate change: Why do we know so little?," Food Policy, Elsevier, vol. 93(C).
    13. Nitin Bassi, 2018. "Solarizing groundwater irrigation in India: a growing debate," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(1), pages 132-145, January.
    14. Jens Marquardt, 2014. "How Sustainable Are Donor‐Driven Solar Power Projects In Remote Areas?," Journal of International Development, John Wiley & Sons, Ltd., vol. 26(6), pages 915-922, August.
    15. Closas, Alvar & Rap, Edwin, 2017. "Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations," Energy Policy, Elsevier, vol. 104(C), pages 33-37.
    16. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    17. Srinivas Chokkakula & Mark Giordano, 2013. "Do policy and institutional factors explain the low levels of smallholder groundwater use in Sub-Saharan Africa?," Water International, Taylor & Francis Journals, vol. 38(6), pages 790-808, October.
    18. Shah, Tushaar & Rajan, Abhishek & Rai, Gyan Prakash & Verma, Shilp & Durga, Neha, "undated". "Solar pumps and South Asia's energy-groundwater nexus: exploring implications and reimagining its future," Papers published in Journals (Open Access) H048971, International Water Management Institute.
    19. Balasubramanya, Soumya & Stifel, David, "undated". "Viewpoint: water, agriculture and poverty in an era of climate change: why do we know so little?," Papers published in Journals (Open Access) H049664, International Water Management Institute.
    20. Mugisha, Joshua & Ratemo, Mike Arasa & Bunani Keza, Bienvenu Christian & Kahveci, Hayriye, 2021. "Assessing the opportunities and challenges facing the development of off-grid solar systems in Eastern Africa: The cases of Kenya, Ethiopia, and Rwanda," Energy Policy, Elsevier, vol. 150(C).
    21. Simone Passarelli & Dawit Mekonnen & Elizabeth Bryan & Claudia Ringler, 2018. "Evaluating the pathways from small-scale irrigation to dietary diversity: evidence from Ethiopia and Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 981-997, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward B. Barbier, 2023. "Overcoming digital poverty traps in rural Asia," Review of Development Economics, Wiley Blackwell, vol. 27(3), pages 1403-1420, August.
    2. Charmaine Samala Guno & Casper Boongaling Agaton, 2022. "Socio-Economic and Environmental Analyses of Solar Irrigation Systems for Sustainable Agricultural Production," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    3. Nakaishi, Tomoaki & Chapman, Andrew & Kagawa, Shigemi, 2022. "Shedding Light on the energy-related social equity of nations toward a just transition," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    4. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    5. Juan Ignacio Herraiz & Rita Hogan Almeida & Manuel Castillo-Cagigal & Luis Narvarte, 2023. "Experimental Performance Evaluation of a PV-Powered Center-Pivot Irrigation System for a Three-Year Operation Period," Energies, MDPI, vol. 16(9), pages 1-19, April.
    6. Magalhaes, M. & Ringler, C. & Verma, Shilp & Schmitter, Petra, 2021. "Accelerating rural energy access for agricultural transformation: contribution of the CGIAR Research Program on Water, Land and Ecosystems to transforming food, land and water systems in a climate cri," IWMI Books, Reports H050910, International Water Management Institute.
    7. Magalhaes, M. & Ringler, C. & Verma, Shilp & Schmitter, Petra, 2022. "Accelerating rural energy access for agricultural transformation: contribution of the CGIAR Research Program on Water, Land and Ecosystems to transforming food, land and water systems in a climate cri," IWMI Reports 329154, International Water Management Institute.
    8. Illiassou Naroua & Abdoulkadri Laouali & Abdoulsalam Koroney, 2022. "Technical Feasibility Of Using Solar Energy In Smallscale Irrigation In Tillabéri, Niger Republic," International Journal of Agriculture and Environmental Research, Malwa International Journals Publication, vol. 8(6), December.
    9. Nikolaos Nagkoulis & Eva Loukogeorgaki & Michela Ghislanzoni, 2022. "Genetic Algorithms-Based Optimum PV Site Selection Minimizing Visual Disturbance," Sustainability, MDPI, vol. 14(19), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kafle, Kashi & Omotilewa, Oluwatoba J., 2021. "Who is likely to benefit from public and private sector investments in farmer-led irrigation? Evidence from Ethiopia," 2021 Annual Meeting, August 1-3, Austin, Texas 313964, Agricultural and Applied Economics Association.
    2. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    3. Berhe, Gebremeskel Teklay & Baartman, Jantiene E.M. & Veldwisch, Gert Jan & Grum, Berhane & Ritsema, Coen J., 2022. "Irrigation development and management practices in Ethiopia: A systematic review on existing problems, sustainability issues and future directions," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Xie, Hua & You, Liangzhi & Dile, Yihun T. & Worqlul, Abeyou W. & Bizimana, Jean-Claude & Srinivasan, Raghavan & Richardson, James W. & Gerik, Thomas & Clark, Neville, 2021. "Mapping development potential of dry-season small-scale irrigation in Sub-Saharan African countries under joint biophysical and economic constraints - An agent-based modeling approach with an applicat," Agricultural Systems, Elsevier, vol. 186(C).
    5. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    6. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    7. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    8. Kiratu, Nixon Murathi & Aarnoudse, Eefje & Petrick, Martin, 2024. "Irrigation-nutrition linkages under farmer-led and public irrigation schemes in Kenya," IAAE 2024 Conference, August 2-7, 2024, New Delhi, India 344347, International Association of Agricultural Economists (IAAE).
    9. Bolukbasi, Gizem & Kocaman, Ayse Selin, 2018. "A prize collecting Steiner tree approach to least cost evaluation of grid and off-grid electrification systems," Energy, Elsevier, vol. 160(C), pages 536-543.
    10. Elshurafa, Amro M. & Alatawi, Hatem & Hasanov, Fakhri J. & Algahtani, Goblan J. & Felder, Frank A., 2022. "Cost, emission, and macroeconomic implications of diesel displacement in the Saudi agricultural sector: Options and policy insights," Energy Policy, Elsevier, vol. 168(C).
    11. Closas, Alvar & Rap, Edwin, 2017. "Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations," Energy Policy, Elsevier, vol. 104(C), pages 33-37.
    12. Trotter, Philipp A. & Maconachie, Roy & McManus, Marcelle C., 2018. "Solar energy's potential to mitigate political risks: The case of an optimised Africa-wide network," Energy Policy, Elsevier, vol. 117(C), pages 108-126.
    13. Krishna Muniyoor, 2020. "Cost-benefit analysis of adopting the solar photovoltaic water pumping system: A case of Rajasthan," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2020(2), pages 35-49.
    14. Magalhaes, M. & Ringler, C. & Verma, Shilp & Schmitter, Petra, 2022. "Accelerating rural energy access for agricultural transformation: contribution of the CGIAR Research Program on Water, Land and Ecosystems to transforming food, land and water systems in a climate cri," IWMI Reports 329154, International Water Management Institute.
    15. Caviglia-Harris, Jill & Biggs, Trent & Ferreira, Elvino & Harris, Daniel W. & Mullan, Katrina & Sills, Erin O., 2021. "The color of water: The contributions of green and blue water to agricultural productivity in the Western Brazilian Amazon," World Development, Elsevier, vol. 146(C).
    16. Magalhaes, M. & Ringler, C. & Verma, Shilp & Schmitter, Petra, 2021. "Accelerating rural energy access for agricultural transformation: contribution of the CGIAR Research Program on Water, Land and Ecosystems to transforming food, land and water systems in a climate cri," IWMI Books, Reports H050910, International Water Management Institute.
    17. Santra, Priyabrata, 2021. "Performance evaluation of solar PV pumping system for providing irrigation through micro-irrigation techniques using surface water resources in hot arid region of India," Agricultural Water Management, Elsevier, vol. 245(C).
    18. Chatterjee, Juhi & Kanitkar, Tejal, 2024. "A Shift to Solar Irrigation Pump-Sets: A Case Study from Uttar Pradesh, India," Review of Agrarian Studies, Foundation for Agrarian Studies, vol. 14(1), June.
    19. Otoo, Miriam & Lefore, Nicole & Schmitter, Petra & Barron, Jennie & Gebregziabher, Gebrehaweria, 2018. "Business model scenarios and suitability: smallholder solar pump-based irrigation in Ethiopia. Agricultural Water Management – Making a Business Case for Smallholders," IWMI Reports 273354, International Water Management Institute.
    20. Shen, Jinlong & Zhao, Yekun & Song, Jianfeng, 2022. "Analysis of the regional differences in agricultural water poverty in China: Based on a new agricultural water poverty index," Agricultural Water Management, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:154:y:2021:i:c:s0301421521001828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.