IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v127y2019icp125-133.html
   My bibliography  Save this article

Evaluating the economy-wide effects of energy efficient lighting in the household sector of Iran

Author

Listed:
  • Barkhordar, Zahra A.

Abstract

Energy efficient lighting confers significant potential in electricity demand reduction. To increase the diffusion of energy efficient lighting, an LED Replacement Lamps Program is proposed. Free of charge LED lamps are suggested to be distributed to households by government to reduce household electricity demand. Because electricity is heavily subsidized in Iran, the direct benefit of the program for the government will be avoiding the energy subsidy payments. Back-of-the-envelope benefit cost analysis suggests that if potential electricity savings are realized, the program will be profitable. However, the possible rebound effect may negatively impact the program effectiveness through partially offsetting the potential electricity savings. Therefore, the viability of the program depends on the actual electricity savings that may differ from its anticipated levels. A hybrid dynamic general equilibrium model is employed to evaluate the actual economy-wide energy savings. The model has the novelty of endogenously calculating useful energy demand (e.g. lighting, cooling). Energy demand is then derived based on end-use efficiency and useful energy demand. Model results indicate an average economy-wide rebound of 43.8%. Even though the rebound value is high, the program is shown to be profitable.

Suggested Citation

  • Barkhordar, Zahra A., 2019. "Evaluating the economy-wide effects of energy efficient lighting in the household sector of Iran," Energy Policy, Elsevier, vol. 127(C), pages 125-133.
  • Handle: RePEc:eee:enepol:v:127:y:2019:i:c:p:125-133
    DOI: 10.1016/j.enpol.2018.11.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518307912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.11.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    2. Schleich, Joachim & Mills, Bradford & Dütschke, Elisabeth, 2014. "A brighter future? Quantifying the rebound effect in energy efficient lighting," Energy Policy, Elsevier, vol. 72(C), pages 35-42.
    3. Guerra, Ana-Isabel & Sancho, Ferran, 2010. "Rethinking economy-wide rebound measures: An unbiased proposal," Energy Policy, Elsevier, vol. 38(11), pages 6684-6694, November.
    4. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    5. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    6. Filippini, Massimo & Pachauri, Shonali, 2004. "Elasticities of electricity demand in urban Indian households," Energy Policy, Elsevier, vol. 32(3), pages 429-436, February.
    7. Bharat Diwakar & Gilad Sorek, 2016. "Dynastic Altruism, Population, and R&D based Growth," Economics Bulletin, AccessEcon, vol. 36(4), pages 2003-2009.
    8. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    9. Besagni, Giorgio & Borgarello, Marco, 2018. "The determinants of residential energy expenditure in Italy," Energy, Elsevier, vol. 165(PA), pages 369-386.
    10. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    11. Ouyang, Jinlong & Long, Enshen & Hokao, Kazunori, 2010. "Rebound effect in Chinese household energy efficiency and solution for mitigating it," Energy, Elsevier, vol. 35(12), pages 5269-5276.
    12. Loginov D. & Avraamova A., 2016. "Population’s social sentiment, Q2 2016," Russian Economic Development, Gaidar Institute for Economic Policy, issue 7, pages 47-50, July.
    13. ., 2016. "Population flows and semi-urbanization," Chapters, in: Understanding China's Urbanization, chapter 6, pages 188-226, Edward Elgar Publishing.
    14. Chun, Natalie & Jiang, Yi, 2013. "How households in Pakistan take on energy efficient lighting technology," Energy Economics, Elsevier, vol. 40(C), pages 277-284.
    15. Paul J.M. Van Steen & Piet H. Pellenbarg & Peter D. Groote, 2016. "Population Growth of Cities in the Netherlands," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 107(1), pages 126-128, February.
    16. Barkhordar, Zahra A. & Saboohi, Yadollah, 2013. "Assessing alternative options for allocating oil revenue in Iran," Energy Policy, Elsevier, vol. 63(C), pages 1207-1216.
    17. Li, Shiyu & Lin, Shuanglin, 2016. "Population aging and China's social security reforms," Journal of Policy Modeling, Elsevier, vol. 38(1), pages 65-95.
    18. Bharat Diwakar & Gilad Sorek, 2016. "Human-Capital Spillover, Population, and Economic Growth," Auburn Economics Working Paper Series auwp2016-02, Department of Economics, Auburn University.
    19. Hsin-I Lee & Hungyen Chen & Hirohisa Kishino & Chen-Tuo Liao, 2016. "A Reference Population-Based Conformance Proportion," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 684-697, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiongfeng Pan & Mengna Li & Chenxi Pu & Haitao Xu, 2021. "Study on the industrial structure optimization under constraint of energy intensity," Energy & Environment, , vol. 32(1), pages 134-151, February.
    2. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    3. Guibentif, Thomas M.M. & Patel, Martin K. & Yilmaz, Selin, 2021. "Using energy saving deficit distributions to assess calculated, deemed and metered electricity savings estimations," Applied Energy, Elsevier, vol. 304(C).
    4. Setia Damayanti & Eka Sudarmaji & Herlan Masrio, 2024. "The Critical Role of Energy Intensity in Decarbonizing ASEAN: Integrating Growth and Emissions Reductions," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 247-259, May.
    5. Behnam Ata & Parisa Pakrooh & Ayoub Barkat & Ramzi Benhizia & János Pénzes, 2022. "Inequalities in Regional Level Domestic CO 2 Emissions and Energy Use: A Case Study of Iran," Energies, MDPI, vol. 15(11), pages 1-26, May.
    6. Murshed, Muntasir, 2023. "Efficacies of technological progress and renewable energy transition in amplifying national electrification rates: contextual evidence from developing countries," Utilities Policy, Elsevier, vol. 81(C).
    7. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    8. Brockway, Paul E. & Sorrell, Steve & Semieniuk, Gregor & Heun, Matthew Kuperus & Court, Victor, 2021. "Energy efficiency and economy-wide rebound effects: A review of the evidence and its implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Seongwon Seo & Greg Foliente, 2021. "Carbon Footprint Reduction through Residential Building Stock Retrofit: A Metro Melbourne Suburb Case Study," Energies, MDPI, vol. 14(20), pages 1-28, October.
    10. Khoshkalam Khosroshahi, Musa & Sayadi, Mohammad, 2020. "Tracking the sources of rebound effect resulting from the efficiency improvement in petrol, diesel, natural gas and electricity consumption; A CGE analysis for Iran," Energy, Elsevier, vol. 197(C).
    11. Konrad Henryk Bachanek & Blanka Tundys & Tomasz Wiśniewski & Ewa Puzio & Anna Maroušková, 2021. "Intelligent Street Lighting in a Smart City Concepts—A Direction to Energy Saving in Cities: An Overview and Case Study," Energies, MDPI, vol. 14(11), pages 1-19, May.
    12. Bolat, C. Kaan & Soytas, Ugur & Akinoglu, Bulent & Nazlioglu, Saban, 2023. "Is there a macroeconomic carbon rebound effect in EU ETS?," Energy Economics, Elsevier, vol. 125(C).
    13. Tu, Chuang & Mu, Xianzhong & Chen, Jian & Kong, Li & Zhang, Zheng & Lu, Yutong & Hu, Guangwen, 2021. "Study on the interactive relationship between urban residents’ expenditure and energy consumption of production sectors," Energy Policy, Elsevier, vol. 157(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    2. Trotta, Gianluca, 2018. "The determinants of energy efficient retrofit investments in the English residential sector," Energy Policy, Elsevier, vol. 120(C), pages 175-182.
    3. Iparraguirre, Jose Luis, 2020. "Reductions in local government spending on community-based social care and unmet social care needs of older people in England," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    4. Yan, Zheming & Ouyang, Xiaoling & Du, Kerui, 2019. "Economy-wide estimates of energy rebound effect: Evidence from China's provinces," Energy Economics, Elsevier, vol. 83(C), pages 389-401.
    5. Rocha, Felipe Freitas da & Almeida, Edmar Luiz Fagundes de, 2021. "A general equilibrium model of macroeconomic rebound effect: A broader view," Energy Economics, Elsevier, vol. 98(C).
    6. Baležentis, Tomas & Butkus, Mindaugas & Štreimikienė, Dalia & Shen, Zhiyang, 2021. "Exploring the limits for increasing energy efficiency in the residential sector of the European Union: Insights from the rebound effect," Energy Policy, Elsevier, vol. 149(C).
    7. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    8. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    9. Turner, Karen & Katris, Antonios, 2017. "A ‘Carbon Saving Multiplier’ as an alternative to rebound in considering reduced energy supply chain requirements from energy efficiency?," Energy Policy, Elsevier, vol. 103(C), pages 249-257.
    10. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    11. Giovanni Marin & Alessandro Palma, 2015. "Technology invention and diffusion in residential energy consumption. A stochastic frontier approach," IEFE Working Papers 81, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    12. Li, Ke & Zhang, Ning & Liu, Yanchu, 2016. "The energy rebound effects across China’s industrial sectors: An output distance function approach," Applied Energy, Elsevier, vol. 184(C), pages 1165-1175.
    13. Lin, Boqiang & Zhu, Penghu, 2021. "Measurement of the direct rebound effect of residential electricity consumption: An empirical study based on the China family panel studies," Applied Energy, Elsevier, vol. 301(C).
    14. Li, Ke & Jiang, Zhujun, 2016. "The impacts of removing energy subsidies on economy-wide rebound effects in China: An input-output analysis," Energy Policy, Elsevier, vol. 98(C), pages 62-72.
    15. Zhang, Yue-Jun & Peng, Hua-Rong & Su, Bin, 2017. "Energy rebound effect in China's Industry: An aggregate and disaggregate analysis," Energy Economics, Elsevier, vol. 61(C), pages 199-208.
    16. Li, Jianglong & Li, Aijun & Xie, Xuan, 2018. "Rebound effect of transportation considering additional capital costs and input-output relationships: The role of subsistence consumption and unmet demand," Energy Economics, Elsevier, vol. 74(C), pages 441-455.
    17. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    18. Estrella Trincado & Antonio Sánchez-Bayón & José María Vindel, 2021. "The European Union Green Deal: Clean Energy Wellbeing Opportunities and the Risk of the Jevons Paradox," Energies, MDPI, vol. 14(14), pages 1-23, July.
    19. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    20. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:127:y:2019:i:c:p:125-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.