IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v114y2018icp355-366.html
   My bibliography  Save this article

Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa

Author

Listed:
  • Dagnachew, Anteneh G.
  • Lucas, Paul L.
  • Hof, Andries F.
  • van Vuuren, Detlef P.

Abstract

Access to electricity services is fundamental to development, as it enables improvements to the quality of human life. At the same time, increasing electricity access can have notable consequences for global climate change. This paper analyses trade-offs and synergies between achieving universal electricity access and climate change mitigation in Sub-Saharan Africa, using the IMAGE-TIMER integrated assessment model. For this purpose, we analysed developments in a number of indicators that describe demand, production, and costs of the future power system under various scenarios with and without climate change mitigation policies. The results show that, achieving universal electricity access requires an annual investment of USD 27–33 billion until 2030 on top of baseline investment. There is a strong synergy in emissions reduction and investment savings, particularly driven by the regions’ efficiency improvements of household appliances (the purchase of efficient appliances and the efficient use of the appliances). On the other hand, climate mitigation policies are projected to increase the cost of electricity per kWh, depending on fossil fuel share in the mix. Therefore, we conclude that, climate policies will need to be combined with complementary policies- e.g. pro-poor tariffs, fuel subsidies, and cross subsidization- to protect the poor from increasing electricity prices.

Suggested Citation

  • Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & van Vuuren, Detlef P., 2018. "Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 114(C), pages 355-366.
  • Handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:355-366
    DOI: 10.1016/j.enpol.2017.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517308467
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deichmann, Uwe & Meisner, Craig & Murray, Siobhan & Wheeler, David, 2011. "The economics of renewable energy expansion in rural Sub-Saharan Africa," Energy Policy, Elsevier, vol. 39(1), pages 215-227, January.
    2. Nerini, Francesco Fuso & Broad, Oliver & Mentis, Dimitris & Welsch, Manuel & Bazilian, Morgan & Howells, Mark, 2016. "A cost comparison of technology approaches for improving access to electricity services," Energy, Elsevier, vol. 95(C), pages 255-265.
    3. Shonali Pachauri, 2014. "Household electricity access a trivial contributor to CO2 emissions growth in India," Nature Climate Change, Nature, vol. 4(12), pages 1073-1076, December.
    4. Lucas, Paul L. & Shukla, P.R. & Chen, Wenying & van Ruijven, Bas J. & Dhar, Subash & den Elzen, Michel G.J. & van Vuuren, Detlef P., 2013. "Implications of the international reduction pledges on long-term energy system changes and costs in China and India," Energy Policy, Elsevier, vol. 63(C), pages 1032-1041.
    5. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    6. Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Plain, N. & Hingray, B. & Mathy, S., 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
    2. Naeher,Dominik & Narayanan,Raghavan & Ziulu,Virginia, 2021. "Impacts of Energy Efficiency Projects in Developing Countries : Evidence from a SpatialDifference-in-Differences Analysis in Malawi," Policy Research Working Paper Series 9842, The World Bank.
    3. Joël Cariolle & David A Carroll, 2020. "Digital Technologies for Small and Medium Enterprises and job creation in Sub-Saharan Africa," Working Papers hal-03004583, HAL.
    4. Agyarko, Kofi A. & Opoku, Richard & Van Buskirk, Robert, 2020. "Removing barriers and promoting demand-side energy efficiency in households in Sub-Saharan Africa: A case study in Ghana," Energy Policy, Elsevier, vol. 137(C).
    5. Dagnachew, Anteneh G. & Hof, Andries F. & Lucas, Paul L. & van Vuuren, Detlef P., 2020. "Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits," Energy, Elsevier, vol. 192(C).
    6. Relva, Stefania Gomes & Silva, Vinícius Oliveira da & Gimenes, André Luiz Veiga & Udaeta, Miguel Edgar Morales & Ashworth, Peta & Peyerl, Drielli, 2021. "Enhancing developing countries’ transition to a low-carbon electricity sector," Energy, Elsevier, vol. 220(C).
    7. Klug, Thomas W. & Beyene, Abebe D. & Meles, Tensay H. & Toman, Michael A. & Hassen, Sied & Hou, Michael & Klooss, Benjamin & Mekonnen, Alemu & Jeuland, Marc, 2022. "A review of impacts of electricity tariff reform in Africa," Energy Policy, Elsevier, vol. 170(C).
    8. Yang, Zhiqing & Liang, Jing, 2023. "The environmental and economic impacts of phasing out cross-subsidy in electricity prices: Evidence from China," Energy, Elsevier, vol. 284(C).
    9. Amoah, Anthony & Ferrini, Silvia & Schaafsma, Marije, 2019. "Electricity outages in Ghana: Are contingent valuation estimates valid?," Energy Policy, Elsevier, vol. 135(C).
    10. Jia, Zhijie & Lin, Boqiang, 2021. "The impact of removing cross subsidies in electric power industry in China: Welfare, economy, and CO2 emission," Energy Policy, Elsevier, vol. 148(PB).
    11. Poblete-Cazenave, Miguel & Pachauri, Shonali, 2020. "A simulation-based estimation model of household electricity demand and appliance ownership," MPRA Paper 103403, University Library of Munich, Germany.
    12. Dagnachew, Anteneh G. & Hof, Andries F. & Roelfsema, Mark R. & van Vuuren, Detlef P., 2020. "Actors and governance in the transition toward universal electricity access in Sub-Saharan Africa," Energy Policy, Elsevier, vol. 143(C).
    13. Cabello Eras, Juan José & Mendoza Fandiño, Jorge Mario & Sagastume Gutiérrez, Alexis & Rueda Bayona, Juan Gabriel & Sofan German, Stiven Javier, 2022. "The inequality of electricity consumption in Colombia. Projections and implications," Energy, Elsevier, vol. 249(C).
    14. Wu, Wei & Zhang, Naishan & Hu, Yingying & Zhou, Dengli & Long, Houyin, 2023. "Crossing the cross-subsidy: Evidence from China's electricity sector," Utilities Policy, Elsevier, vol. 84(C).
    15. Mohd Arshad Ansari & Muhammed Ashiq Villanthenkodath & Vaseem Akram & Badri Narayan Rath, 2023. "The nexus between ecological footprint, economic growth, and energy poverty in sub-Saharan Africa: a technological threshold approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7823-7850, August.
    16. Poblete-Cazenave, Miguel & Pachauri, Shonali, 2021. "A model of energy poverty and access: Estimating household electricity demand and appliance ownership," Energy Economics, Elsevier, vol. 98(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karsu, Özlem & Kocaman, Ayse Selin, 2021. "Towards the Sustainable Development Goals: A Bi-objective framework for electricity access," Energy, Elsevier, vol. 216(C).
    2. Valickova, Petra & Elms, Nicholas, 2021. "The costs of providing access to electricity in selected countries in Sub-Saharan Africa and policy implications," Energy Policy, Elsevier, vol. 148(PA).
    3. Ortega-Arriaga, P. & Babacan, O. & Nelson, J. & Gambhir, A., 2021. "Grid versus off-grid electricity access options: A review on the economic and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    5. Nock, Destenie & Levin, Todd & Baker, Erin, 2020. "Changing the policy paradigm: A benefit maximization approach to electricity planning in developing countries," Applied Energy, Elsevier, vol. 264(C).
    6. Gill-Wiehl, A. & Miles, S. & Wu, J. & Kammen, D.M., 2022. "Beyond customer acquisition: A comprehensive review of community participation in mini grid projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Ciller, Pedro & Lumbreras, Sara, 2020. "Electricity for all: The contribution of large-scale planning tools to the energy-access problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Setu Pelz & Shonali Pachauri & Sebastian Groh, 2018. "A critical review of modern approaches for multidimensional energy poverty measurement," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    9. Dagnachew, Anteneh G. & Lucas, Paul L. & Hof, Andries F. & Gernaat, David E.H.J. & de Boer, Harmen-Sytze & van Vuuren, Detlef P., 2017. "The role of decentralized systems in providing universal electricity access in Sub-Saharan Africa – A model-based approach," Energy, Elsevier, vol. 139(C), pages 184-195.
    10. Bolukbasi, Gizem & Kocaman, Ayse Selin, 2018. "A prize collecting Steiner tree approach to least cost evaluation of grid and off-grid electrification systems," Energy, Elsevier, vol. 160(C), pages 536-543.
    11. Ioannis Pappis & Andreas Sahlberg & Tewodros Walle & Oliver Broad & Elusiyan Eludoyin & Mark Howells & Will Usher, 2021. "Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning," Energies, MDPI, vol. 14(4), pages 1-36, February.
    12. Pillot, Benjamin & Muselli, Marc & Poggi, Philippe & Dias, João Batista, 2019. "Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: The case of solar PV," Energy Policy, Elsevier, vol. 127(C), pages 113-124.
    13. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    14. Moretti, Luca & Astolfi, Marco & Vergara, Claudio & Macchi, Ennio & Pérez-Arriaga, Josè Ignacio & Manzolini, Giampaolo, 2019. "A design and dispatch optimization algorithm based on mixed integer linear programming for rural electrification," Applied Energy, Elsevier, vol. 233, pages 1104-1121.
    15. Lucas, Paul L. & Nielsen, Jens & Calvin, Katherine & L. McCollum, David & Marangoni, Giacomo & Strefler, Jessica & van der Zwaan, Bob C.C. & van Vuuren, Detlef P., 2015. "Future energy system challenges for Africa: Insights from Integrated Assessment Models," Energy Policy, Elsevier, vol. 86(C), pages 705-717.
    16. Falchetta, Giacomo & Mistry, Malcolm N., 2021. "The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa," Energy Economics, Elsevier, vol. 99(C).
    17. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    18. Marian Leimbach & Niklas Roming & Gregor Schwerhoff & Anselm Schultes, 2016. "Development perspectives of Sub-Saharan Africa under climate policies," EcoMod2016 9336, EcoMod.
    19. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Patterns and determinants of household use of fuels for cooking: Empirical evidence from sub-Saharan Africa," Energy, Elsevier, vol. 117(P1), pages 93-104.
    20. Bustos, Cristian & Watts, David, 2017. "Novel methodology for microgrids in isolated communities: Electricity cost-coverage trade-off with 3-stage technology mix, dispatch & configuration optimizations," Applied Energy, Elsevier, vol. 195(C), pages 204-221.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:355-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.