IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v110y2017icp644-652.html
   My bibliography  Save this article

The future of coal in China

Author

Listed:
  • Zhang, Xiaohan
  • Winchester, Niven
  • Zhang, Xiliang

Abstract

As the world's largest consumer of total primary energy and energy from coal, and the largest emitter of carbon dioxide (CO2), China is now taking an active role in controlling CO2 emissions. Given current coal use in China, and the urgent need to cut emissions, ‘clean coal’ technologies are regarded as a promising solution for China to meet its carbon reduction targets while still obtaining a considerable share of energy from coal. Using an economy-wide model, this paper evaluates the impact of two existing advanced coal technologies – coal upgrading and ultra-supercritical (USC) coal power generation – on economic, energy and emissions outcomes when a carbon price is used to meet China's CO2 intensity target out to 2035. Additional deployment of USC coal power generation lowers the carbon price required to meet the CO2 intensity target by more than 40% in the near term and by 25% in the longer term. It also increases total coal power generation and coal use. Increasing the share of coal that is upgraded leads to only a small decrease in the carbon price. As China's CO2 intensity is set exogenously, additional deployment of the two technologies has a small impact on total CO2 emissions.

Suggested Citation

  • Zhang, Xiaohan & Winchester, Niven & Zhang, Xiliang, 2017. "The future of coal in China," Energy Policy, Elsevier, vol. 110(C), pages 644-652.
  • Handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:644-652
    DOI: 10.1016/j.enpol.2017.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517304342
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angel Aguiar & Badri Narayanan & Robert McDougall, 2016. "An Overview of the GTAP 9 Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 181-208, June.
    2. Yue, Li, 2012. "Dynamics of clean coal-fired power generation development in China," Energy Policy, Elsevier, vol. 51(C), pages 138-142.
    3. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    4. Hübler, Michael & Voigt, Sebastian & Löschel, Andreas, 2014. "Designing an emissions trading scheme for China—An up-to-date climate policy assessment," Energy Policy, Elsevier, vol. 75(C), pages 57-72.
    5. Yuan, Jiahai & Lei, Qi & Xiong, Minpeng & Guo, Jingsheng & Hu, Zheng, 2016. "The prospective of coal power in China: Will it reach a plateau in the coming decade?," Energy Policy, Elsevier, vol. 98(C), pages 495-504.
    6. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    7. Cao,Jing & Ho,Mun-Sing & Timilsina,Govinda R., 2016. "Impacts of carbon pricing in reducing the carbon intensity of China's GDP," Policy Research Working Paper Series 7735, The World Bank.
    8. Angus Charteris & Niven Winchester, 2010. "Dairy disaggregation and joint production in an economy-wide model *-super-‡," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 491-507, October.
    9. Jeffrey C Peters, 2016. "The GTAP-Power Data Base: Disaggregating the Electricity Sector in the GTAP Data Base," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(1), pages 209-250, June.
    10. Zhao, Changhong & Zhang, Weirong & Wang, Yang & Liu, Qilin & Guo, Jingsheng & Xiong, Minpeng & Yuan, Jiahai, 2017. "The economics of coal power generation in China," Energy Policy, Elsevier, vol. 105(C), pages 1-9.
    11. Tang, Xu & Snowden, Simon & McLellan, Benjamin C. & Höök, Mikael, 2015. "Clean coal use in China: Challenges and policy implications," Energy Policy, Elsevier, vol. 87(C), pages 517-523.
    12. Charteris, Angus & Winchester, Niven, 2010. "Dairy disaggregation and joint production in an economy-wide model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-17.
    13. Qi, Tianyu & Winchester, Niven & Karplus, Valerie J. & Zhang, Da & Zhang, Xiliang, 2016. "An analysis of China's climate policy using the China-in-Global Energy Model," Economic Modelling, Elsevier, vol. 52(PB), pages 650-660.
    14. Li, Aijun & Lin, Boqiang, 2013. "Comparing climate policies to reduce carbon emissions in China," Energy Policy, Elsevier, vol. 60(C), pages 667-674.
    15. Jim Watson, Gordon MacKerron, David Ockwell and Tao Wang, 2007. "Technology and carbon mitigation in developing countries: Are cleaner coal technologies a viable option?," Human Development Occasional Papers (1992-2007) HDOCPA-2007-16, Human Development Report Office (HDRO), United Nations Development Programme (UNDP).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
    2. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    4. Wang, Yongpei & Yan, Weilong & Zhuang, Shangwen & Zhang, Qian, 2019. "Competition or complementarity ? The hydropower and thermal power nexus in China," Renewable Energy, Elsevier, vol. 138(C), pages 531-541.
    5. Wu, Yunna & Xu, Chuanbo & Zhang, Buyuan & Tao, Yao & Li, Xinying & Chu, Han & Liu, Fangtong, 2019. "Sustainability performance assessment of wind power coupling hydrogen storage projects using a hybrid evaluation technique based on interval type-2 fuzzy set," Energy, Elsevier, vol. 179(C), pages 1176-1190.
    6. Shijie Song & Beibei Zheng & Tao Sun & Lin Du & Jiangbo Wei, 2023. "Influence of Different Mining Damage Types on Soil Erodibility in Coal Mining Areas of Northern Shaanxi in the Middle Reaches of the Yellow River in China," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    7. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    8. Wang, Delu & Wan, Kaidi & Song, Xuefeng & Liu, Yun, 2019. "Provincial allocation of coal de-capacity targets in China in terms of cost, efficiency, and fairness," Energy Economics, Elsevier, vol. 78(C), pages 109-128.
    9. Rolfe, A. & Huang, Y. & Haaf, M. & Rezvani, S. & MclIveen-Wright, D. & Hewitt, N.J., 2018. "Integration of the calcium carbonate looping process into an existing pulverized coal-fired power plant for CO2 capture: Techno-economic and environmental evaluation," Applied Energy, Elsevier, vol. 222(C), pages 169-179.
    10. Dongyue Li & Yilan Liao, 2018. "Spatial Characteristics of Heavy Metals in Street Dust of Coal Railway Transportation Hubs: A Case Study in Yuanping, China," IJERPH, MDPI, vol. 15(12), pages 1-21, November.
    11. Wang, Chunyan & Li, Yaqing & Liu, Yi, 2018. "Investigation of water-energy-emission nexus of air pollution control of the coal-fired power industry: A case study of Beijing-Tianjin-Hebei region, China," Energy Policy, Elsevier, vol. 115(C), pages 291-301.
    12. Junlian Gao & Xiangyang Xu & Guiying Cao & Yurii M. Ermoliev & Tatiana Y. Ermolieva & Elena A. Rovenskaya, 2018. "Optimizing Regional Food and Energy Production under Limited Water Availability through Integrated Modeling," Sustainability, MDPI, vol. 10(6), pages 1-12, May.
    13. Martínez-Guido, Sergio Iván & Ríos-Badrán, Inés María & Gutiérrez-Antonio, Claudia & Ponce-Ortega, José María, 2019. "Strategic planning for the use of waste biomass pellets in Mexican power plants," Renewable Energy, Elsevier, vol. 130(C), pages 622-632.
    14. Yuliang Yang & Chaoqun Cui, 2022. "Which Provincial Regions in China Should Give Priority to the Redevelopment of Abandoned Coal Mines? A Redevelopment Potential Evaluation Based Analysis," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    15. Wang, Yongpei & Yan, Weilong & Komonpipat, Supak, 2019. "How does the capacity utilization of thermal power generation affect pollutant emissions? Evidence from the panel data of China's provinces," Energy Policy, Elsevier, vol. 132(C), pages 440-451.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mu, Yaqian & Evans, Samuel & Wang, Can & Cai, Wenjia, 2018. "How will sectoral coverage affect the efficiency of an emissions trading system? A CGE-based case study of China," Applied Energy, Elsevier, vol. 227(C), pages 403-414.
    2. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    3. Zhao, Changhong & Zhang, Weirong & Wang, Yang & Liu, Qilin & Guo, Jingsheng & Xiong, Minpeng & Yuan, Jiahai, 2017. "The economics of coal power generation in China," Energy Policy, Elsevier, vol. 105(C), pages 1-9.
    4. Yuan, Jiahai & Wang, Yang & Zhang, Weirong & Zhao, Changhong & Liu, Qian & Shen, Xinyi & Zhang, Kai & Dong, Liansai, 2017. "Will recent boom in coal power lead to a bust in China? A micro-economic analysis," Energy Policy, Elsevier, vol. 108(C), pages 645-656.
    5. Niven Winchester, 2018. "Can tariffs be used to enforce Paris climate commitments?," The World Economy, Wiley Blackwell, vol. 41(10), pages 2650-2668, October.
    6. Kat, Bora & Paltsev, Sergey & Yuan, Mei, 2018. "Turkish energy sector development and the Paris Agreement goals: A CGE model assessment," Energy Policy, Elsevier, vol. 122(C), pages 84-96.
    7. Winkler, Malte Björn Johannes & Peterson, Sonja & Thube, Sneha, 2021. "Gains associated with linking the EU and Chinese ETS under different assumptions on restrictions, allowance endowments, and international trade," Energy Economics, Elsevier, vol. 104(C).
    8. Hui-Chih Chai & Wei-Hong Hong & John M. Reilly & Sergey Paltsev & Y.-H. Henry Chen, 2019. "Will Greenhouse Gases Mitigation Policies Abroad Affect The Domestic Economy? The Case Of Taiwan," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-26, November.
    9. Winchester, Niven & White, Dominic, 2022. "The Climate PoLicy ANalysis (C-PLAN) Model, Version 1.0," Energy Economics, Elsevier, vol. 108(C).
    10. Arun Singh & Niven Winchester & Valerie J. Karplus, 2019. "Evaluating India’S Climate Targets: The Implications Of Economy-Wide And Sector-Specific Policies," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-29, August.
    11. Khabbazan, Mohammad M. & von Hirschhausen, Christian, 2021. "The implication of the Paris targets for the Middle East through different cooperation options," Energy Economics, Elsevier, vol. 104(C).
    12. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).
    13. Christoph Böhringer & Thomas F. Rutherford, 2017. "Paris after Trump: An Inconvenient Insight," CESifo Working Paper Series 6531, CESifo.
    14. Huang, Xiaodan & Chang, Shiyan & Zheng, Dingqian & Zhang, Xiliang, 2020. "The role of BECCS in deep decarbonization of China's economy: A computable general equilibrium analysis," Energy Economics, Elsevier, vol. 92(C).
    15. Niven Winchester & John M. Reilly, 2019. "The Economic, Energy, And Emissions Impacts Of Climate Policy In South Korea," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 1-23, August.
    16. Li, Mengyu & Weng, Yuyan & Duan, Maosheng, 2019. "Emissions, energy and economic impacts of linking China’s national ETS with the EU ETS," Applied Energy, Elsevier, vol. 235(C), pages 1235-1244.
    17. Bruno Lanz & Thomas F. Rutherford, 2016. "GTAPINGAMS, version 9: Multiregional and small open economy models with alternative demand systems," IRENE Working Papers 16-08, IRENE Institute of Economic Research.
    18. Landis, Florian & Fredriksson, Gustav & Rausch, Sebastian, 2021. "Between- and within-country distributional impacts from harmonizing carbon prices in the EU," Energy Economics, Elsevier, vol. 103(C).
    19. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    20. Wang, Delu & Wan, Kaidi & Song, Xuefeng, 2020. "Understanding coal miners’ livelihood vulnerability to declining coal demand: Negative impact and coping strategies," Energy Policy, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:644-652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.