IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v92y2020ics014098832030298x.html
   My bibliography  Save this article

Analyzing carbon pricing policies using a general equilibrium model with production parameters estimated using firm data

Author

Listed:
  • Cao, Jing
  • Ho, Mun S.
  • Ma, Rong

Abstract

Policy simulation results of Computable General Equilibrium (CGE) models largely hinge on the choices of substitution elasticities among key input factors. Currently, most CGE models rely on the common elasticities estimated from aggregated data, such as the GTAP model elasticity parameters. Using firm level data, we apply the control function method to estimate CES production functions with capital, labor and energy inputs and find significant heterogeneity in substitution elasticities across different industries. Our capital-labor substitution elasticities are much lower than the GTAP values while our energy elasticities are higher. We then incorporate these estimated elasticities into a CGE model to simulate China's carbon pricing policies and compare with the results using GTAP parameters. Our less elastic K-L substitution leads to lower base case GDP growth, but our more elastic energy substitution lead to lower coal use and carbon emissions. In the carbon tax policy exercises, we find that our elasticities lead to easier reductions in coal use and carbon emissions.

Suggested Citation

  • Cao, Jing & Ho, Mun S. & Ma, Rong, 2020. "Analyzing carbon pricing policies using a general equilibrium model with production parameters estimated using firm data," Energy Economics, Elsevier, vol. 92(C).
  • Handle: RePEc:eee:eneeco:v:92:y:2020:i:c:s014098832030298x
    DOI: 10.1016/j.eneco.2020.104958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832030298X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2020.104958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Jan De Loecker & Frederic Warzynski, 2012. "Markups and Firm-Level Export Status," American Economic Review, American Economic Association, vol. 102(6), pages 2437-2471, October.
    3. Jan De Loecker & Pinelopi K. Goldberg & Amit K. Khandelwal & Nina Pavcnik, 2016. "Prices, Markups, and Trade Reform," Econometrica, Econometric Society, vol. 84, pages 445-510, March.
    4. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    5. Marie Hyland and Stefanie Haller, 2018. "Firm-level Estimates of Fuel Substitution: An Application to Carbon Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    6. Smyth, Russell & Narayan, Paresh Kumar & Shi, Hongliang, 2011. "Substitution between energy and classical factor inputs in the Chinese steel sector," Applied Energy, Elsevier, vol. 88(1), pages 361-367, January.
    7. Ezra Oberfield & Devesh Raval, 2021. "Micro Data and Macro Technology," Econometrica, Econometric Society, vol. 89(2), pages 703-732, March.
    8. Azusa OKAGAWA & Kanemi BAN, 2008. "Estimation of substitution elasticities for CGE models," Discussion Papers in Economics and Business 08-16, Osaka University, Graduate School of Economics.
    9. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
    10. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Griffin, James M & Gregory, Paul R, 1976. "An Intercountry Translog Model of Energy Substitution Responses," American Economic Review, American Economic Association, vol. 66(5), pages 845-857, December.
    12. Haller, Stefanie A. & Hyland, Marie, 2014. "Capital–energy substitution: Evidence from a panel of Irish manufacturing firms," Energy Economics, Elsevier, vol. 45(C), pages 501-510.
    13. Brandt, Loren & Van Biesebroeck, Johannes & Zhang, Yifan, 2012. "Creative accounting or creative destruction? Firm-level productivity growth in Chinese manufacturing," Journal of Development Economics, Elsevier, vol. 97(2), pages 339-351.
    14. van der Werf, Edwin, 2008. "Production functions for climate policy modeling: An empirical analysis," Energy Economics, Elsevier, vol. 30(6), pages 2964-2979, November.
    15. Yi Lu Jr. & Linhui Yu Jr., 2015. "Trade Liberalization and Markup Dispersion: Evidence from China's WTO Accession," American Economic Journal: Applied Economics, American Economic Association, vol. 7(4), pages 221-253, October.
    16. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    17. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    18. Baccianti, Claudio, 2013. "Estimation of sectoral elasticities of substitution along the international technology frontier," ZEW Discussion Papers 13-092, ZEW - Leibniz Centre for European Economic Research.
    19. Feng, Shenghao & Zhang, Keyu, 2018. "Fuel-factor nesting structures in CGE models of China," Energy Economics, Elsevier, vol. 75(C), pages 274-284.
    20. Loren Brandt & Johannes Van Biesebroeck & Luhang Wang & Yifan Zhang, 2017. "WTO Accession and Performance of Chinese Manufacturing Firms," American Economic Review, American Economic Association, vol. 107(9), pages 2784-2820, September.
    21. Henningsen, Arne & Henningsen, Geraldine & van der Werf, Edwin, 2019. "Capital-labour-energy substitution in a nested CES framework: A replication and update of Kemfert (1998)," Energy Economics, Elsevier, vol. 82(C), pages 16-25.
    22. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    23. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    24. Simon Koesler & Michael Schymura, 2015. "Substitution Elasticities In A Constant Elasticity Of Substitution Framework - Empirical Estimates Using Nonlinear Least Squares," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 101-121, March.
    25. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    26. Su, Xuanming & Zhou, Weisheng & Nakagami, Ken'Ichi & Ren, Hongbo & Mu, Hailin, 2012. "Capital stock-labor-energy substitution and production efficiency study for China," Energy Economics, Elsevier, vol. 34(4), pages 1208-1213.
    27. Antoszewski, Michał, 2019. "Wide-range estimation of various substitution elasticities for CES production functions at the sectoral level," Energy Economics, Elsevier, vol. 83(C), pages 272-289.
    28. Zha, Donglan & Zhou, Dequn, 2014. "The elasticity of substitution and the way of nesting CES production function with emphasis on energy input," Applied Energy, Elsevier, vol. 130(C), pages 793-798.
    29. Chris Papageorgiou & Marianne Saam & Patrick Schulte, 2017. "Substitution between Clean and Dirty Energy Inputs: A Macroeconomic Perspective," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 281-290, May.
    30. Keting Shen & John Whalley, 2013. "Capital-Labor-Energy Substitution in Nested CES Production Functions for China," NBER Working Papers 19104, National Bureau of Economic Research, Inc.
    31. Jorgenson, Dale W., 1986. "Econometric methods for modeling producer behavior," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 31, pages 1841-1915, Elsevier.
    32. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    33. Lecca, Patrizio & Swales, Kim & Turner, Karen, 2011. "An investigation of issues relating to where energy should enter the production function," Economic Modelling, Elsevier, vol. 28(6), pages 2832-2841.
    34. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2005. "Productivity, Volume 3: Information Technology and the American Growth Resurgence," MIT Press Books, The MIT Press, edition 1, volume 3, number 0262101114, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    2. Li, Yangfan & Zhang, Xiaoyun, 2023. "Recycling scheme of carbon pricing for inclusive decarbonization and energy transition: A recursive computable general equilibrium analysis in China," Renewable Energy, Elsevier, vol. 217(C).
    3. Cao, Jing & Ho, Mun S. & Ma, Rong & Teng, Fei, 2021. "When carbon emission trading meets a regulated industry: Evidence from the electricity sector of China," Journal of Public Economics, Elsevier, vol. 200(C).
    4. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lagomarsino, Elena, 2020. "Estimating elasticities of substitution with nested CES production functions: Where do we stand?," Energy Economics, Elsevier, vol. 88(C).
    2. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    3. Malliet, Paul & Reynès, Frédéric G., 2022. "Empirical estimates of the elasticity of substitution of a KLEM production function without nesting constraints: The case of the Variable Output Elasticity-Cobb Douglas," Conference papers 333423, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    5. Inoue, Emiko & Taniguchi, Hiroya & Yamada, Ken, 2022. "Measuring energy-saving technological change: International trends and differences," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    6. Zhu, Xuehong & Zeng, Anqi & Zhong, Meirui & Huang, Jianbai, 2021. "Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries," Resources Policy, Elsevier, vol. 73(C).
    7. Wu, Mingqin & Yu, Linhui & Zhang, Junsen, 2023. "Road expansion, allocative efficiency, and pro-competitive effect of transport infrastructure: Evidence from China," Journal of Development Economics, Elsevier, vol. 162(C).
    8. Pham, Hoang, 2023. "Trade reform, oligopsony, and labor market distortion: Theory and evidence," Journal of International Economics, Elsevier, vol. 144(C).
    9. Feng, Shenghao & Zhang, Keyu, 2018. "Fuel-factor nesting structures in CGE models of China," Energy Economics, Elsevier, vol. 75(C), pages 274-284.
    10. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    11. Dai, Xiaoyong & Sun, Zao & Liu, Hang, 2018. "Disentangling the effects of endogenous export and innovation on the performance of Chinese manufacturing firms," China Economic Review, Elsevier, vol. 50(C), pages 42-58.
    12. Hsu, Wen-Tai & Lu, Yi & Wu, Guiying Laura, 2020. "Competition, markups, and gains from trade: A quantitative analysis of China between 1995 and 2004," Journal of International Economics, Elsevier, vol. 122(C).
    13. Lu, Yi & Sugita, Yoichi & 杉田, 洋一 & Zhu, Lianming, 2019. "Wage and Markdowns and FDI Liberalization," Discussion paper series HIAS-E-83, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    14. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    15. Zhengwen Liu & Hong Ma, 2021. "Input Trade Liberalization And Markup Distribution: Evidence From China," Economic Inquiry, Western Economic Association International, vol. 59(1), pages 344-360, January.
    16. Zhang, Hongsong, 2019. "Non-neutral technology, firm heterogeneity, and labor demand," Journal of Development Economics, Elsevier, vol. 140(C), pages 145-168.
    17. Xunyong Xiang & Feixiang Chen & Chun†Yu Ho & Wen Yue, 2017. "Heterogeneous effects of trade liberalisation on firm†level markups: Evidence from China," The World Economy, Wiley Blackwell, vol. 40(8), pages 1667-1686, August.
    18. Jaumandreu, Jordi & Doraszelski, Ulrich, 2019. "Using Cost Minimization to Estimate Markups," CEPR Discussion Papers 14114, C.E.P.R. Discussion Papers.
    19. Du, Pengcheng & Wang, Shuxun, 2020. "The effect of minimum wage on firm markup: Evidence from China," Economic Modelling, Elsevier, vol. 86(C), pages 241-250.
    20. Emir Malikov & Shunan Zhao & Jingfang Zhang, 2024. "A System Approach to Structural Identification of Production Functions with Multi-Dimensional Productivity," Advances in Econometrics, in: Essays in Honor of Subal Kumbhakar, volume 46, pages 211-263, Emerald Group Publishing Limited.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:92:y:2020:i:c:s014098832030298x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.