IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v80y2019icp476-490.html
   My bibliography  Save this article

Advanced technologies in energy-economy models for climate change assessment

Author

Listed:
  • Morris, Jennifer F.
  • Reilly, John M.
  • Chen, Y.-H. Henry

Abstract

Considerations regarding the roles of advanced technologies are crucial in energy-economic modeling, as these technologies, while usually not yet commercially viable, could substitute for fossil energy when favorable policies are in place. To improve the representation of the penetration of advanced technologies in energy-economic models, we present a formulation that is parameterized based on observations, while capturing elements of rent and real adjustment cost increases if high demand due to a large policy shock suddenly appears. The formulation is applied to a global computable general equilibrium model to explore the role of low-carbon alternatives in the electric power sector. While other modeling approaches often adopt specific constraints on expansion, our approach is based on the assumption and observation that these constraints are not absolute, and how fast advanced technologies will expand is endogenous to economic incentives. The policy simulations, while not intended to represent realistic price paths, are designed to illustrate the response of our technology diffusion approach under sudden increased demand for advanced technologies.

Suggested Citation

  • Morris, Jennifer F. & Reilly, John M. & Chen, Y.-H. Henry, 2019. "Advanced technologies in energy-economy models for climate change assessment," Energy Economics, Elsevier, vol. 80(C), pages 476-490.
  • Handle: RePEc:eee:eneeco:v:80:y:2019:i:c:p:476-490
    DOI: 10.1016/j.eneco.2019.01.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319300490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.01.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iyer, Gokul & Hultman, Nathan & Eom, Jiyong & McJeon, Haewon & Patel, Pralit & Clarke, Leon, 2015. "Diffusion of low-carbon technologies and the feasibility of long-term climate targets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 103-118.
    2. McFarland, J. R. & Reilly, J. M. & Herzog, H. J., 2004. "Representing energy technologies in top-down economic models using bottom-up information," Energy Economics, Elsevier, vol. 26(4), pages 685-707, July.
    3. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    4. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, January.
    5. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    6. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    7. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, January.
    8. J. P. Gould, 1968. "Adjustment Costs in the Theory of Investment of the Firm," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 35(1), pages 47-55.
    9. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
    10. Keppo, Ilkka & Strubegger, Manfred, 2010. "Short term decisions for long term problems – The effect of foresight on model based energy systems analysis," Energy, Elsevier, vol. 35(5), pages 2033-2042.
    11. Robert E. Lucas & Jr., 1967. "Adjustment Costs and the Theory of Supply," Journal of Political Economy, University of Chicago Press, vol. 75(4), pages 321-321.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kettner, Claudia & Leoni, Thomas & Köberl, Judith & Kortschak, Dominik & Kirchner, Mathias & Sommer, Mark & Wallenko, Laura & Bachner, Gabriel & Mayer, Jakob & Spittler, Nathalie & Kulmer, Veronika, 2024. "Modelling the economy-wide effects of unilateral CO2 pricing under different revenue recycling schemes in Austria – Searching for a triple dividend," Energy Economics, Elsevier, vol. 137(C).
    2. Winchester, Niven & White, Dominic, 2022. "The Climate PoLicy ANalysis (C-PLAN) Model, Version 1.0," Energy Economics, Elsevier, vol. 108(C).
    3. Xiaoye Jin & Meiying Li & Fansheng Meng, 2019. "Comprehensive Evaluation of the New Energy Power Generation Development at the Regional Level: An Empirical Analysis from China," Energies, MDPI, vol. 12(23), pages 1-15, December.
    4. Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
    5. An, Kangxin & Wang, Can & Cai, Wenjia, 2023. "Low-carbon technology diffusion and economic growth of China: an evolutionary general equilibrium framework," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 253-263.
    6. Gurgel, Angelo & Mignone, Bryan K. & Morris, Jennifer & Kheshgi, Haroon & Mowers, Matthew & Steinberg, Daniel & Herzog, Howard & Paltsev, Sergey, 2023. "Variable renewable energy deployment in low-emission scenarios: The role of technology cost and value," Applied Energy, Elsevier, vol. 344(C).
    7. Desport, Lucas & Gurgel, Angelo & Morris, Jennifer & Herzog, Howard & Chen, Yen-Heng Henry & Selosse, Sandrine & Paltsev, Sergey, 2024. "Deploying direct air capture at scale: How close to reality?," Energy Economics, Elsevier, vol. 129(C).
    8. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    9. Kapsalyamova, Zhanna & Paltsev, Sergey, 2020. "Use of natural gas and oil as a source of feedstocks," Energy Economics, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renaud Coulomb & Oskar Lecuyer & Adrien Vogt-Schilb, 2019. "Optimal Transition from Coal to Gas and Renewable Power Under Capacity Constraints and Adjustment Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 557-590, June.
    2. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E., 2016. "Do national-level policies to promote low-carbon technology deployment pay off for the investor countries?," Energy Policy, Elsevier, vol. 98(C), pages 400-411.
    3. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    4. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
    5. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    6. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    7. George Alogoskoufis, 2014. "Endogenous Growth and External Balance in a Small Open Economy," Open Economies Review, Springer, vol. 25(3), pages 571-594, July.
    8. Mercure, J.-F. & Pollitt, H. & Chewpreecha, U. & Salas, P. & Foley, A.M. & Holden, P.B. & Edwards, N.R., 2014. "The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector," Energy Policy, Elsevier, vol. 73(C), pages 686-700.
    9. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    10. Gernaat, David E.H.J. & Van Vuuren, Detlef P. & Van Vliet, Jasper & Sullivan, Patrick & Arent, Douglas J., 2014. "Global long-term cost dynamics of offshore wind electricity generation," Energy, Elsevier, vol. 76(C), pages 663-672.
    11. Enrica Cian & Samuel Carrara & Massimo Tavoni, 2014. "Innovation benefits from nuclear phase-out: can they compensate the costs?," Climatic Change, Springer, vol. 123(3), pages 637-650, April.
    12. Saed Alizamir & Francis de Véricourt & Peng Sun, 2016. "Efficient Feed-In-Tariff Policies for Renewable Energy Technologies," Operations Research, INFORMS, vol. 64(1), pages 52-66, February.
    13. Löschel, Andreas & Otto, Vincent M., 2009. "Technological uncertainty and cost effectiveness of CO2 emission reduction," Energy Economics, Elsevier, vol. 31(Supplemen), pages 4-17.
    14. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2016. "Diversity in solar photovoltaic energy: Implications for innovation and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 331-340.
    15. Zimm, Caroline, 2021. "Improving the understanding of electric vehicle technology and policy diffusion across countries," Transport Policy, Elsevier, vol. 105(C), pages 54-66.
    16. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    17. Johnson, Nils & Krey, Volker & McCollum, David L. & Rao, Shilpa & Riahi, Keywan & Rogelj, Joeri, 2015. "Stranded on a low-carbon planet: Implications of climate policy for the phase-out of coal-based power plants," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 89-102.
    18. Gross, Robert & Hanna, Richard & Gambhir, Ajay & Heptonstall, Philip & Speirs, Jamie, 2018. "How long does innovation and commercialisation in the energy sectors take? Historical case studies of the timescale from invention to widespread commercialisation in energy supply and end use technolo," Energy Policy, Elsevier, vol. 123(C), pages 682-699.
    19. van Blommestein, Kevin & Daim, Tugrul U. & Cho, Yonghee & Sklar, Paul, 2018. "Structuring financial incentives for residential solar electric systems," Renewable Energy, Elsevier, vol. 115(C), pages 28-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:80:y:2019:i:c:p:476-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.