IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v128y2023ics014098832300631x.html
   My bibliography  Save this article

Measuring the time-frequency spillover effect among carbon markets and shipping energy markets: A global perspective

Author

Listed:
  • Meng, Bin
  • Wei, Bangguo
  • Yang, Mo
  • Kuang, Haibo

Abstract

Global decarbonization has significantly tightened the link between the shipping industry and the carbon market. Understanding the mechanism of the interdependence between shipping energy and the carbon market is of great importance for carbon pricing and decarbonization of shipping; however, one challenge is that, unlike traditional energy resources, the transmission channels of carbon emissions from shipping energy are built on a global network with distinct geographical heterogeneity. In view of this, we propose a global carbon-shipping market-level framework and scrutinize the intermarket spillover effect in the time and frequency domains. The main findings are as follows: First, the short-term spillover dominates the interaction, where shipping energy markets mainly act as the transmitters and carbon markets mainly play the role of the receivers. Second, the EU carbon market has the largest influence on shipping energy markets, and the spillovers of the marine gas oil and high‑sulfur fuel oil markets on carbon markets are more prominent. Third, the intensity of the spillover effect is negatively correlated with the distance of major events, while the volatility of the spillover effect is the largest in European ports and the smallest in Asian ports. Last, policy-oriented events have the most significant impact on the volatility spillovers between markets, followed by politically oriented events, with market-oriented events having the mildest impact. This study sheds light on the mechanism of the spillovers between the carbon and shipping markets accounting for geographical heterogeneity and provides valuable insights for policymakers to better understand both markets and improve policy efficiency.

Suggested Citation

  • Meng, Bin & Wei, Bangguo & Yang, Mo & Kuang, Haibo, 2023. "Measuring the time-frequency spillover effect among carbon markets and shipping energy markets: A global perspective," Energy Economics, Elsevier, vol. 128(C).
  • Handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s014098832300631x
    DOI: 10.1016/j.eneco.2023.107133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832300631X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alizadeh, Amir H. & Nomikos, Nikos K., 2004. "Cost of carry, causality and arbitrage between oil futures and tanker freight markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(4), pages 297-316, July.
    2. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    3. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    4. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Xiaolin Sun & Hailong Liu & Shiyuan Zheng & Shun Chen, 2018. "Combination hedging strategies for crude oil and dry bulk freight rates on the impacts of dynamic cross-market interaction," Maritime Policy & Management, Taylor & Francis Journals, vol. 45(2), pages 174-196, February.
    6. Bin Meng & Shuiyang Chen & Hercules Haralambides & Haibo Kuang & Lidong Fan, 2023. "Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04046290, HAL.
    7. Meng, Bin & Chen, Shuiyang & Haralambides, Hercules & Kuang, Haibo & Fan, Lidong, 2023. "Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis," Energy Economics, Elsevier, vol. 120(C).
    8. Lining Wang & Wenying Chen & XunZhang Pan & Nan Li & Huan Wang & Danyang Li & Han Chen, 2018. "Scale and benefit of global carbon markets under the 2 °C goal: integrated modeling and an effort-sharing platform," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1207-1223, December.
    9. Gong, Xu & Shi, Rong & Xu, Jun & Lin, Boqiang, 2021. "Analyzing spillover effects between carbon and fossil energy markets from a time-varying perspective," Applied Energy, Elsevier, vol. 285(C).
    10. Angelopoulos, Jason & Sahoo, Satya & Visvikis, Ilias D., 2020. "Commodity and transportation economic market interactions revisited: New evidence from a dynamic factor model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    11. Bai, Xiwen & Lam, Jasmine Siu Lee, 2021. "Freight rate co-movement and risk spillovers in the product tanker shipping market: A copula analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    12. Zhen, Lu & Wang, Shuaian & Zhuge, Dan, 2017. "Dynamic programming for optimal ship refueling decision," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 63-74.
    13. Maitra, Debasish & Chandra, Saurabh & Dash, Saumya Ranjan, 2020. "Liner shipping industry and oil price volatility: Dynamic connectedness and portfolio diversification," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    14. Andrea Baranzini & Jeroen C. J. M. van den Bergh & Stefano Carattini & Richard B. Howarth & Emilio Padilla & Jordi Roca, 2017. "Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(4), July.
    15. Lin, Arthur J. & Chang, Hai Yen & Hsiao, Jung Lieh, 2019. "Does the Baltic Dry Index drive volatility spillovers in the commodities, currency, or stock markets?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 265-283.
    16. Wenming Shi & Zhongzhi Yang & Kevin X. Li, 2013. "The impact of crude oil price on the tanker market," Maritime Policy & Management, Taylor & Francis Journals, vol. 40(4), pages 309-322, July.
    17. Bin Meng & Shuiyang Chen & Hercules Haralambides & Haibo Kuang & Lidong Fan, 2023. "Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis," Post-Print hal-04046290, HAL.
    18. Charakopoulos, Avraam & Karakasidis, Theodoros & Sarris, loannis, 2019. "Pattern identification for wind power forecasting via complex network and recurrence plot time series analysis," Energy Policy, Elsevier, vol. 133(C).
    19. ., 2022. "International, supranational and national shipping policies," Chapters, in: Globalisation, Policy and Shipping, chapter 5, pages 46-73, Edward Elgar Publishing.
    20. Hung, Ngo Thai & Vo, Xuan Vinh, 2021. "Directional spillover effects and time-frequency nexus between oil, gold and stock markets: Evidence from pre and during COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 76(C).
    21. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    22. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adewuyi, Adeolu O. & Adeleke, Musefiu A. & Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel, 2023. "Dynamic linkages between shipping and commodity markets: Evidence from a novel asymmetric time-frequency method," Resources Policy, Elsevier, vol. 83(C).
    2. Shi, Wenming & Gong, Yuting & Yin, Jingbo & Nguyen, Son & Liu, Qian, 2022. "Determinants of dynamic dependence between the crude oil and tanker freight markets: A mixed-frequency data sampling copula model," Energy, Elsevier, vol. 254(PB).
    3. Hercules Haralambides, 2023. "The state-of-play in maritime economics and logistics research (2017–2023)," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 25(3), pages 429-451, September.
    4. Wu, Xinyu & Jiang, Zhengting, 2023. "Time-varying asymmetric volatility spillovers among China’s carbon markets, new energy market and stock market under the shocks of major events," Energy Economics, Elsevier, vol. 126(C).
    5. Maitra, Debasish & Chandra, Saurabh & Dash, Saumya Ranjan, 2020. "Liner shipping industry and oil price volatility: Dynamic connectedness and portfolio diversification," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    6. Zhang-Hangjian Chen & Xiang Gao & Apicha Insuwan, 2023. "Dynamic information spillover between Chinese carbon and stock markets under extreme weather shocks," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    7. Sun, Xiaolin & Haralambides, Hercules & Liu, Hailong, 2019. "Dynamic spillover effects among derivative markets in tanker shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 384-409.
    8. Theodoros Syriopoulos & Efthymios Roumpis & Michael Tsatsaronis, 2023. "Hedging Strategies in Carbon Emission Price Dynamics: Implications for Shipping Markets," Energies, MDPI, vol. 16(17), pages 1-27, September.
    9. Ki-Hong Choi & Seong-Min Yoon, 2020. "Asymmetric Dependence between Oil Prices and Maritime Freight Rates: A Time-Varying Copula Approach," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    10. Meng, Bin & Chen, Shuiyang & Haralambides, Hercules & Kuang, Haibo & Fan, Lidong, 2023. "Information spillovers between carbon emissions trading prices and shipping markets: A time-frequency analysis," Energy Economics, Elsevier, vol. 120(C).
    11. Inglesi-Lotz, R. & Dogan, Eyup & Nel, J. & Tzeremes, Panayiotis, 2023. "Connectedness and spillovers in the innovation network of green transportation," Energy Policy, Elsevier, vol. 180(C).
    12. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    13. Gu, Bingmei & Liu, Jiaguo, 2022. "Determinants of dry bulk shipping freight rates: Considering Chinese manufacturing industry and economic policy uncertainty," Transport Policy, Elsevier, vol. 129(C), pages 66-77.
    14. Yang, Jialin & Ge, Ying-En & Li, Kevin X., 2022. "Measuring volatility spillover effects in dry bulk shipping market," Transport Policy, Elsevier, vol. 125(C), pages 37-47.
    15. Yue‐Jun Zhang & Shu‐Jiao Ma, 2021. "Exploring the dynamic price discovery, risk transfer and spillover among INE, WTI and Brent crude oil futures markets: Evidence from the high‐frequency data," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2414-2435, April.
    16. Wu, Ruirui & Qin, Zhongfeng & Liu, Bing-Yue, 2022. "A systemic analysis of dynamic frequency spillovers among carbon emissions trading (CET), fossil energy and sectoral stock markets: Evidence from China," Energy, Elsevier, vol. 254(PA).
    17. Mensi, Walid & Vo, Xuan Vinh & Ko, Hee-Un & Kang, Sang Hoon, 2023. "Frequency spillovers between green bonds, global factors and stock market before and during COVID-19 crisis," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 558-580.
    18. Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).
    19. Li, Hailing & Li, Yuxin & Zhang, Hua, 2023. "The spillover effects among the traditional energy markets, metal markets and sub-sector clean energy markets," Energy, Elsevier, vol. 275(C).
    20. Zhou, Yuqin & Wu, Shan & Zhang, Zeyi, 2022. "Multidimensional risk spillovers among carbon, energy and nonferrous metals markets: Evidence from the quantile VAR network," Energy Economics, Elsevier, vol. 114(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:128:y:2023:i:c:s014098832300631x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.