IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v114y2022ics0140988322004054.html
   My bibliography  Save this article

Complex risk contagions among large international energy firms: A multi-layer network analysis

Author

Listed:
  • Wu, Fei
  • Xiao, Xuanqi
  • Zhou, Xinyu
  • Zhang, Dayong
  • Ji, Qiang

Abstract

This paper introduces a multi-layer network approach to explore risk contagions in a sample of top energy firms in the world. Large energy companies play a very important role in the international energy market. Mapping their responses to different types of shocks provides profound implications for understanding how international energy markets work, and could also create significant value for investors in the energy sector. Specifically, we distinguish three layers of risk spillovers, covering return correlations as well as upper tail and lower tail dependence. Through a multi-layer network setting, we identify both within layer linkages and inter-layer linkages. In addition, the dynamic evolution of this network structure is explored through a rolling-window approach, which enables us to evaluate the level of structural stability. Our empirical results unveil three regional clusters and a dynamic power shifting pattern in the international energy sector. Overall, this multi-layer network approach allows us to detect complex risk contagion patterns in financial markets and could be generalized to other scenarios.

Suggested Citation

  • Wu, Fei & Xiao, Xuanqi & Zhou, Xinyu & Zhang, Dayong & Ji, Qiang, 2022. "Complex risk contagions among large international energy firms: A multi-layer network analysis," Energy Economics, Elsevier, vol. 114(C).
  • Handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322004054
    DOI: 10.1016/j.eneco.2022.106271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988322004054
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poledna, Sebastian & Molina-Borboa, José Luis & Martínez-Jaramillo, Serafín & van der Leij, Marco & Thurner, Stefan, 2015. "The multi-layer network nature of systemic risk and its implications for the costs of financial crises," Journal of Financial Stability, Elsevier, vol. 20(C), pages 70-81.
    2. Zhu, Bo & Liu, Jiahao & Lin, Renda & Chevallier, Julien, 2021. "Cross-border systemic risk spillovers in the global oil system: Does the oil trade pattern matter?," Energy Economics, Elsevier, vol. 101(C).
    3. Bataa, Erdenebat & Park, Cheolbeom, 2017. "Is the recent low oil price attributable to the shale revolution?," Energy Economics, Elsevier, vol. 67(C), pages 72-82.
    4. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    5. Geng, Jiang-Bo & Du, Ya-Juan & Ji, Qiang & Zhang, Dayong, 2021. "Modeling return and volatility spillover networks of global new energy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    7. Gong, Xu & Lin, Boqiang, 2018. "The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market," Energy Economics, Elsevier, vol. 74(C), pages 370-386.
    8. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2017. "The dynamic linkages between crude oil and natural gas markets," Energy Economics, Elsevier, vol. 62(C), pages 155-170.
    9. Restrepo, Natalia & Uribe, Jorge M. & Manotas, Diego, 2018. "Financial risk network architecture of energy firms," Applied Energy, Elsevier, vol. 215(C), pages 630-642.
    10. Ma, Yan-Ran & Zhang, Dayong & Ji, Qiang & Pan, Jiaofeng, 2019. "Spillovers between oil and stock returns in the US energy sector: Does idiosyncratic information matter?," Energy Economics, Elsevier, vol. 81(C), pages 536-544.
    11. Thomas, Stephen, 2018. "Corporate performance of the Seven Brothers of the European energy market: Then there were five," Utilities Policy, Elsevier, vol. 50(C), pages 164-174.
    12. Wu, Fei & Zhang, Dayong & Ji, Qiang, 2021. "Systemic risk and financial contagion across top global energy companies," Energy Economics, Elsevier, vol. 97(C).
    13. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Yaya, OlaOluwa S. & Al-Faryan, Mamdouh Abdulaziz Saleh, 2022. "Does oil connect differently with prominent assets during war? Analysis of intra-day data during the Russia-Ukraine saga," Resources Policy, Elsevier, vol. 77(C).
    14. Sourav Batabyal & Robert Killins, 2021. "The Influence of Oil Prices on Equity Returns of Canadian Energy Firms," JRFM, MDPI, vol. 14(5), pages 1-16, May.
    15. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    16. Bonneuil, N. & Boucekkine, R., 2016. "Optimal transition to renewable energy with threshold of irreversible pollution," European Journal of Operational Research, Elsevier, vol. 248(1), pages 257-262.
    17. Ma, Yan-Ran & Ji, Qiang & Wu, Fei & Pan, Jiaofeng, 2021. "Financialization, idiosyncratic information and commodity co-movements," Energy Economics, Elsevier, vol. 94(C).
    18. F. Pozzi & T. Matteo & T. Aste, 2012. "Exponential smoothing weighted correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 85(6), pages 1-21, June.
    19. L. Bargigli & G. di Iasio & L. Infante & F. Lillo & F. Pierobon, 2015. "The multiplex structure of interbank networks," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 673-691, April.
    20. Zhu, Bo & Lin, Renda & Liu, Jiahao, 2020. "Magnitude and persistence of extreme risk spillovers in the global energy market: A high-dimensional left-tail interdependence perspective," Energy Economics, Elsevier, vol. 89(C).
    21. David C. Broadstock & Ying Fan & Qiang Ji & Dayong Zhang, 2016. "Shocks and Stocks: A Bottom-up Assessment of the Relationship Between Oil Prices, Gasoline Prices and the Returns of Chinese Firms," The Energy Journal, , vol. 37(1_suppl), pages 55-86, January.
    22. Singh, Vipul Kumar & Kumar, Pawan & Nishant, Shreyank, 2019. "Global connectedness of MSCI energy equity indices: A system-wide network approach," Energy Economics, Elsevier, vol. 84(C).
    23. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    24. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    25. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    26. Ahmed, Rizwan & Chaudhry, Sajid M. & Kumpamool, Chamaiporn & Benjasak, Chonlakan, 2022. "Tail risk, systemic risk and spillover risk of crude oil and precious metals," Energy Economics, Elsevier, vol. 112(C).
    27. Xu Gong & Boqiang Lin, 2021. "Effects of structural changes on the prediction of downside volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1124-1153, July.
    28. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    29. Robert. K. Kaufmann & Caitlin Connelly, 2020. "Oil price regimes and their role in price diversions from market fundamentals," Nature Energy, Nature, vol. 5(2), pages 141-149, February.
    30. Corbet, Shaen & Goodell, John W. & Günay, Samet, 2020. "Co-movements and spillovers of oil and renewable firms under extreme conditions: New evidence from negative WTI prices during COVID-19," Energy Economics, Elsevier, vol. 92(C).
    31. Gong, Xu & Liu, Yun & Wang, Xiong, 2021. "Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method," International Review of Financial Analysis, Elsevier, vol. 76(C).
    32. An, Sufang & Gao, Xiangyun & An, Haizhong & Liu, Siyao & Sun, Qingru & Jia, Nanfei, 2020. "Dynamic volatility spillovers among bulk mineral commodities: A network method," Resources Policy, Elsevier, vol. 66(C).
    33. Lv, Xin & Lien, Donald & Yu, Chang, 2020. "Who affects who? Oil price against the stock return of oil-related companies: Evidence from the U.S. and China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 85-100.
    34. Hofert, Marius & Maechler, Martin, 2011. "Nested Archimedean Copulas Meet R: The nacopula Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i09).
    35. Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.
    36. Algieri, Bernardina & Leccadito, Arturo, 2017. "Assessing contagion risk from energy and non-energy commodity markets," Energy Economics, Elsevier, vol. 62(C), pages 312-322.
    37. Óskarsdóttir, María & Bravo, Cristián, 2021. "Multilayer network analysis for improved credit risk prediction," Omega, Elsevier, vol. 105(C).
    38. Wang, TianTian & Zhang, Dayong & Clive Broadstock, David, 2019. "Financialization, fundamentals, and the time-varying determinants of US natural gas prices," Energy Economics, Elsevier, vol. 80(C), pages 707-719.
    39. Wu, Fei & Zhao, Wan-Li & Ji, Qiang & Zhang, Dayong, 2020. "Dependency, centrality and dynamic networks for international commodity futures prices," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 118-132.
    40. Zhiwei Zhang & Dayong Zhang & Fei Wu & Qiang Ji, 2021. "Systemic risk in the Chinese financial system: A copula‐based network approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2044-2063, April.
    41. Andriosopoulos, Kostas & Galariotis, Emilios & Spyrou, Spyros, 2017. "Contagion, volatility persistence and volatility spill-overs: The case of energy markets during the European financial crisis," Energy Economics, Elsevier, vol. 66(C), pages 217-227.
    42. Gärttner, Johannes & Flath, Christoph M. & Weinhardt, Christof, 2018. "Portfolio and contract design for demand response resources," European Journal of Operational Research, Elsevier, vol. 266(1), pages 340-353.
    43. Zhang, Dayong, 2017. "Oil shocks and stock markets revisited: Measuring connectedness from a global perspective," Energy Economics, Elsevier, vol. 62(C), pages 323-333.
    44. Wu, Fei, 2020. "Stock market integration in East and Southeast Asia: The role of global factors," International Review of Financial Analysis, Elsevier, vol. 67(C).
    45. Wang, Gang-Jin & Xiong, Lu & Zhu, You & Xie, Chi & Foglia, Matteo, 2022. "Multilayer network analysis of investor sentiment and stock returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Rangan & Nel, Jacobus & Salisu, Afees A. & Ji, Qiang, 2023. "Predictability of economic slowdowns in advanced countries over eight centuries: The role of climate risks," Finance Research Letters, Elsevier, vol. 54(C).
    2. Tingguo Zheng & Hongyin Zhang & Shiqi Ye, 2024. "Monetary Policies on Green Financial Markets: Evidence from a Multi-Moment Connectedness Network," Papers 2405.02575, arXiv.org, revised Oct 2024.
    3. Ouyang, Zisheng & Zhou, Xuewei & Wang, Gang-jin & Liu, Shuwen & Lu, Min, 2024. "Multilayer networks in the frequency domain: Measuring volatility connectedness among Chinese financial institutions," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 909-928.
    4. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Interconnected networks: Measuring extreme risk connectedness between China’s financial sector and real estate sector," International Review of Financial Analysis, Elsevier, vol. 90(C).
    5. Shen, Yiran & Sun, Xiaolei & Ji, Qiang & Zhang, Dayong, 2023. "Climate events matter in the global natural gas market," Energy Economics, Elsevier, vol. 125(C).
    6. Yao, Yinhong & Li, Jingyu & Chen, Wei, 2024. "Multiscale extreme risk spillovers among the Chinese mainland, Hong Kong, and London stock markets: Comparing the impacts of three Stock Connect programs," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1217-1233.
    7. Ouyang, Zisheng & Zhou, Xuewei & Lu, Min & Liu, Ke, 2024. "Imported financial risk in global stock markets: Evidence from the interconnected network," Research in International Business and Finance, Elsevier, vol. 69(C).
    8. Jia, Shanghui & Chen, Xinhui & Jin, Jiayu, 2024. "Digital disruption and energy efficiency: The impact of regional digitalization on China's industrial sector," Energy, Elsevier, vol. 300(C).
    9. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    10. Ouyang, Zisheng & Zhou, Xuewei, 2023. "Multilayer networks in the frequency domain: Measuring extreme risk connectedness of Chinese financial institutions," Research in International Business and Finance, Elsevier, vol. 65(C).
    11. Lin, Boqiang & Wang, Siquan, 2024. "Sustainability of renewable energy in China: Enhanced strategic investment and displaced R&D expenditure," Energy Economics, Elsevier, vol. 131(C).
    12. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    13. Zhu, Bo & Deng, Yuanyue & Hu, Xin, 2023. "Global energy security: Do internal and external risk spillovers matter? A multilayer network method," Energy Economics, Elsevier, vol. 126(C).
    14. Xie, Qichang & Fang, Tingwei & Rong, Xueyun & Xu, Xin, 2024. "Nonlinear behavior of tail risk resonance and early warning: Insight from global energy stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    15. Xing, Xiaoyun & Chen, Ying & Wang, Xiuya & Li, Boyao & Deng, Jing, 2023. "The impact of national carbon market establishment on risk transmission among carbon and energy markets in China: A systemic importance analysis," Finance Research Letters, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Fei & Zhang, Dayong & Ji, Qiang, 2021. "Systemic risk and financial contagion across top global energy companies," Energy Economics, Elsevier, vol. 97(C).
    2. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    3. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    4. Xie, Qichang & Fang, Tingwei & Rong, Xueyun & Xu, Xin, 2024. "Nonlinear behavior of tail risk resonance and early warning: Insight from global energy stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    5. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    6. Geng, Jiang-Bo & Du, Ya-Juan & Ji, Qiang & Zhang, Dayong, 2021. "Modeling return and volatility spillover networks of global new energy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Zhu, Bo & Deng, Yuanyue & Hu, Xin, 2023. "Global energy security: Do internal and external risk spillovers matter? A multilayer network method," Energy Economics, Elsevier, vol. 126(C).
    8. Szafranek, Karol & Rubaszek, Michał & Uddin, Gazi Salah, 2024. "The role of uncertainty and sentiment for intraday volatility connectedness between oil and financial markets," Energy Economics, Elsevier, vol. 137(C).
    9. Billah, Mabruk & Karim, Sitara & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness," Research in International Business and Finance, Elsevier, vol. 62(C).
    10. Adekoya, Oluwasegun B. & Oliyide, Johnson A., 2021. "How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques," Resources Policy, Elsevier, vol. 70(C).
    11. Ma, Yan-Ran & Ji, Qiang & Wu, Fei & Pan, Jiaofeng, 2021. "Financialization, idiosyncratic information and commodity co-movements," Energy Economics, Elsevier, vol. 94(C).
    12. Zhang, Yunhan & Ji, Qiang & Zhang, Dayong & Guo, Kun, 2024. "How does Shanghai crude oil futures affect top global oil companies: The role of multi-uncertainties," Energy Economics, Elsevier, vol. 131(C).
    13. Zhu, Mingxue & Zhang, Hua & Xing, Wanli & Zhou, Xuanru & Wang, Lu & Sun, Haoyu, 2023. "Research on price transmission in Chinese mining stock market: Based on industry," Resources Policy, Elsevier, vol. 83(C).
    14. Dai, Zhifeng & Peng, Yongxin, 2022. "Economic policy uncertainty and stock market sector time-varying spillover effect: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    15. Radu Lupu & Adrian Cantemir Călin & Cristina Georgiana Zeldea & Iulia Lupu, 2021. "Systemic Risk Spillovers in the European Energy Sector," Energies, MDPI, vol. 14(19), pages 1-23, October.
    16. Ma, Yan-Ran & Zhang, Dayong & Ji, Qiang & Pan, Jiaofeng, 2019. "Spillovers between oil and stock returns in the US energy sector: Does idiosyncratic information matter?," Energy Economics, Elsevier, vol. 81(C), pages 536-544.
    17. Das, Debojyoti & Maitra, Debasish & Dutta, Anupam & Basu, Sankarshan, 2022. "Financial stress and crude oil implied volatility: New evidence from continuous wavelet transformation framework," Energy Economics, Elsevier, vol. 115(C).
    18. Xiao, Jihong & Chen, Xian & Li, Yang & Wen, Fenghua, 2022. "Oil price uncertainty and stock price crash risk: Evidence from China," Energy Economics, Elsevier, vol. 112(C).
    19. Balash, Vladimir & Faizliev, Alexey, 2024. "Volatility spillovers across Russian oil and gas sector. Evidence of the impact of global markets and extraordinary events," Energy Economics, Elsevier, vol. 129(C).
    20. Dai, Zhifeng & Zhang, Xiaotong & Yin, Zhujia, 2023. "Extreme time-varying spillovers between high carbon emission stocks, green bond and crude oil: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 118(C).

    More about this item

    Keywords

    Energy firms; Multi-layer network; Risk contagions; Time-varying;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:114:y:2022:i:c:s0140988322004054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.