IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v14y2004i3p469-480.html
   My bibliography  Save this article

The Moment Formula For Implied Volatility At Extreme Strikes

Author

Listed:
  • Roger W. Lee

Abstract

Consider options on a nonnegative underlying random variable with arbitrary distribution. In the absence of arbitrage, we show that at any maturity T, the large‐strike tail of the Black‐Scholes implied volatility skew is bounded by the square root of 2|x|/T, where x is log‐moneyness. The smallest coefficient that can replace the 2 depends only on the number of finite moments in the underlying distribution. We prove the moment formula, which expresses explicitly this model‐independent relationship. We prove also the reciprocal moment formula for the small‐strike tail, and we exhibit the symmetry between the formulas. The moment formula, which evaluates readily in many cases of practical interest, has applications to skew extrapolation and model calibration.

Suggested Citation

  • Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
  • Handle: RePEc:bla:mathfi:v:14:y:2004:i:3:p:469-480
    DOI: 10.1111/j.0960-1627.2004.00200.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0960-1627.2004.00200.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0960-1627.2004.00200.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexander Lipton, 2001. "Mathematical Methods for Foreign Exchange:A Financial Engineer's Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 4694, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.
    2. Alexander Lipton, 2020. "Physics and Derivatives -- Interview Questions and Answers," Papers 2003.11471, arXiv.org.
    3. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    4. Ilya Molchanov & Michael Schmutz, 2009. "Exchangeability type properties of asset prices," Papers 0901.4914, arXiv.org, revised Apr 2011.
    5. Alexander Lipton, 2020. "Old Problems, Classical Methods, New Solutions," Papers 2003.06903, arXiv.org.
    6. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    7. A. Itkin & A. Lipton & D. Muravey, 2021. "Multilayer heat equations: application to finance," Papers 2102.08338, arXiv.org.
    8. Simonella, Roberta & Vázquez, Carlos, 2023. "XVA in a multi-currency setting with stochastic foreign exchange rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 59-79.
    9. Viatcheslav Gorovoi & Vadim Linetsky, 2004. "Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 49-78, January.
    10. Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
    11. Roger Lord & Remmert Koekkoek & Dick Van Dijk, 2010. "A comparison of biased simulation schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 177-194.
    12. Simon J. A. Malham & Anke Wiese, 2013. "Chi-Square Simulation Of The Cir Process And The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(03), pages 1-38.
    13. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    14. Minqiang Li & Fabio Mercurio, 2014. "Closed-Form Approximation Of Perpetual Timer Option Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1-34.
    15. Andrey Itkin & Dmitry Muravey, 2021. "Semi-analytical pricing of barrier options in the time-dependent $\lambda$-SABR model," Papers 2109.02134, arXiv.org.
    16. Jairo A. Rendon, 2019. "Global And Regional Risks In Currency Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-25, December.
    17. Vadim Linetsky, 2004. "The Spectral Decomposition Of The Option Value," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 337-384.
    18. Alexander Lipton & Ioana Savescu, 2012. "Pricing credit default swaps with bilateral value adjustments," Papers 1207.6049, arXiv.org.
    19. Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
    20. Amengual, Dante & Xiu, Dacheng, 2018. "Resolution of policy uncertainty and sudden declines in volatility," Journal of Econometrics, Elsevier, vol. 203(2), pages 297-315.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:14:y:2004:i:3:p:469-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.