IDEAS home Printed from https://ideas.repec.org/a/eee/ememar/v54y2023ics1566014122001121.html
   My bibliography  Save this article

A machine learning approach for comparing the largest firm effect

Author

Listed:
  • Kim, Jang Ho
  • Han, Jiwoon
  • Kang, Taehyeon
  • Fabozzi, Frank J.

Abstract

Market capitalization of firms provides valuable information for analyzing stock markets and the size factor is widely used in factor-based investing. Some markets, such as the Korean market, are especially interesting in this respect because they contain extremely large public firms. This study analyzes the effect of the largest firm on factor investing through machine learning models that are effective for variable selection. We demonstrate how machine learning can be used for identifying important factors. Our comparison between US and Korean markets shows the significance of separating the largest firm in analyzing how factors impact performance in the Korean market.

Suggested Citation

  • Kim, Jang Ho & Han, Jiwoon & Kang, Taehyeon & Fabozzi, Frank J., 2023. "A machine learning approach for comparing the largest firm effect," Emerging Markets Review, Elsevier, vol. 54(C).
  • Handle: RePEc:eee:ememar:v:54:y:2023:i:c:s1566014122001121
    DOI: 10.1016/j.ememar.2022.100995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1566014122001121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ememar.2022.100995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kearney, Colm, 2012. "Emerging markets research: Trends, issues and future directions," Emerging Markets Review, Elsevier, vol. 13(2), pages 159-183.
    2. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    3. Kim, Soon-Ho & Kim, Dongcheol & Shin, Hyun-Soo, 2012. "Evaluating asset pricing models in the Korean stock market," Pacific-Basin Finance Journal, Elsevier, vol. 20(2), pages 198-227.
    4. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    5. Vasco M. Carvalho & Basile Grassi, 2019. "Large Firm Dynamics and the Business Cycle," American Economic Review, American Economic Association, vol. 109(4), pages 1375-1425, April.
    6. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018. "On the determinants of bitcoin returns: A LASSO approach," Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
    7. Lischewski, Judith & Voronkova, Svitlana, 2012. "Size, value and liquidity. Do They Really Matter on an Emerging Stock Market?," Emerging Markets Review, Elsevier, vol. 13(1), pages 8-25.
    8. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    9. Julian di Giovanni & Andrei A. Levchenko & Isabelle Mejean, 2014. "Firms, Destinations, and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 82(4), pages 1303-1340, July.
    10. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    11. Jung, Woo-Sung & Chae, Seungbyung & Yang, Jae-Suk & Moon, Hie-Tae, 2006. "Characteristics of the Korean stock market correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 263-271.
    12. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    13. Horowitz, Joel L. & Loughran, Tim & Savin, N. E., 2000. "Three analyses of the firm size premium," Journal of Empirical Finance, Elsevier, vol. 7(2), pages 143-153, August.
    14. Xavier Gabaix, 2011. "The Granular Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 79(3), pages 733-772, May.
    15. De Moor, Lieven & Sercu, Piet, 2013. "The smallest firm effect: An international study," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 129-155.
    16. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    17. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    18. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    19. van Dijk, Mathijs A., 2011. "Is size dead? A review of the size effect in equity returns," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3263-3274.
    20. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    21. Julian di Giovanni & Andrei A. Levchenko, 2012. "Country Size, International Trade, and Aggregate Fluctuations in Granular Economies," Journal of Political Economy, University of Chicago Press, vol. 120(6), pages 1083-1132.
    22. Cakici, Nusret & Fabozzi, Frank J. & Tan, Sinan, 2013. "Size, value, and momentum in emerging market stock returns," Emerging Markets Review, Elsevier, vol. 16(C), pages 46-65.
    23. Woo Chang Kim & John Mulvey, 2009. "Evaluating style investment—Does a fund market defined along equity styles add value?," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 637-651.
    24. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    25. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    2. Anton Astakhov & Tomas Havranek & Jiri Novak, 2019. "Firm Size And Stock Returns: A Quantitative Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 33(5), pages 1463-1492, December.
    3. Cakici, Nusret & Zaremba, Adam, 2021. "Liquidity and the cross-section of international stock returns," Journal of Banking & Finance, Elsevier, vol. 127(C).
    4. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    5. Anton Astakhov & Tomas Havranek & Jiri Novak, 2017. "Firm Size and Stock Returns: A Meta-Analysis," Working Papers IES 2017/14, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2017.
    6. Zaremba Adam & Konieczka Przemysław, 2017. "Size, Value, and Momentum in Polish Equity Returns: Local or International Factors?," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 53(3), pages 26-47, September.
    7. Victoria Atanasov & Thomas Nitschka, 2013. "The Size Effect in Value and Momentum Factors: Implications for the Cross-section of International Stock Returns," Tinbergen Institute Discussion Papers 13-180/IV/DSF66, Tinbergen Institute.
    8. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, December.
    9. De Moor, Lieven & Sercu, Piet, 2013. "The smallest firm effect: An international study," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 129-155.
    10. Cakici, Nusret & Zaremba, Adam, 2022. "Salience theory and the cross-section of stock returns: International and further evidence," Journal of Financial Economics, Elsevier, vol. 146(2), pages 689-725.
    11. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    12. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    13. Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
    14. Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
    15. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.
    16. Waszczuk, Antonina, 2013. "A risk-based explanation of return patterns—Evidence from the Polish stock market," Emerging Markets Review, Elsevier, vol. 15(C), pages 186-210.
    17. Adam ZAREMBA, 2015. "Low Risk Anomaly In The Cee Stock Markets," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 81-102, September.
    18. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    19. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).
    20. Artmann, Sabine & Finter, Philipp & Kempf, Alexander, 2011. "Determinants of expected stock returns: Large sample evidence from the German market," CFR Working Papers 10-01 [rev.], University of Cologne, Centre for Financial Research (CFR).

    More about this item

    Keywords

    Market capitalization; Variable selection; Lasso regression; Random forest;
    All these keywords.

    JEL classification:

    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ememar:v:54:y:2023:i:c:s1566014122001121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620356 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.