IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2110.02735.html
   My bibliography  Save this paper

Optimal pricing for electricity retailers based on data-driven consumers' price-response

Author

Listed:
  • Rom'an P'erez-Santalla
  • Miguel Carri'on
  • Carlos Ruiz

Abstract

In the present work we tackle the problem of finding the optimal price tariff to be set by a risk-averse electric retailer participating in the pool and whose customers are price-sensitive. We assume that the retailer has access to a sufficiently large smart-meter dataset from which it can statistically characterize the relationship between the tariff price and the demand load of its clients. Three different models are analyzed to predict the aggregated load as a function of the electricity prices and other parameters, as humidity or temperature. More specifically, we train linear regression (predictive) models to forecast the resulting demand load as a function of the retail price. Then we will insert this model in a quadratic optimization problem which evaluates the optimal price to be offered. This optimization problem accounts for different sources of uncertainty including consumer's response, pool prices and renewable source availability, and relies on a stochastic and risk-averse formulation. In particular, one important contribution of this work is to base the scenario generation and reduction procedure on the statistical properties of the resulting predictive model. This allows us to properly quantify (data-driven) not only the expected value but the level of uncertainty associated with the main problem parameters. Moreover, we consider both standard forward based contracts and the recently introduced power purchase agreement contracts as risk-hedging tools for the retailer. The results are promising as profits are found for the retailer with highly competitive prices and some possible improvements are shown if richer datasets could be available in the future. A realistic case study and multiple sensitivity analyses have been performed to characterize the risk-aversion behavior of the retailer considering price-sensitive consumers.

Suggested Citation

  • Rom'an P'erez-Santalla & Miguel Carri'on & Carlos Ruiz, 2021. "Optimal pricing for electricity retailers based on data-driven consumers' price-response," Papers 2110.02735, arXiv.org, revised Feb 2022.
  • Handle: RePEc:arx:papers:2110.02735
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2110.02735
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deng, Tingting & Yan, Wenzhou & Nojavan, Sayyad & Jermsittiparsert, Kittisak, 2020. "Risk evaluation and retail electricity pricing using downside risk constraints method," Energy, Elsevier, vol. 192(C).
    2. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
    3. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, January.
    4. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morteza Neishaboori & Alireza Arshadi Khamseh & Abolfazl Mirzazadeh & Mostafa Esmaeeli & Hamed Davari Ardakani, 2024. "Stochastic optimal pricing for retail electricity considering demand response, renewable energy sources and environmental effects," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(5), pages 435-451, October.
    2. repec:cte:wsrepe:34605 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Román Pérez-Santalla & Miguel Carrión & Carlos Ruiz, 2022. "Optimal pricing for electricity retailers based on data-driven consumers’ price-response," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 430-464, October.
    2. Dadashi, Mojtaba & Haghifam, Sara & Zare, Kazem & Haghifam, Mahmoud-Reza & Abapour, Mehdi, 2020. "Short-term scheduling of electricity retailers in the presence of Demand Response Aggregators: A two-stage stochastic Bi-Level programming approach," Energy, Elsevier, vol. 205(C).
    3. Ghasemi, Ahmad & Jamshidi Monfared, Houman & Loni, Abdolah & Marzband, Mousa, 2021. "CVaR-based retail electricity pricing in day-ahead scheduling of microgrids," Energy, Elsevier, vol. 227(C).
    4. Paolo Falbo & Carlos Ruiz, 2021. "Joint optimization of sales-mix and generation plan for a large electricity producer," Papers 2110.02016, arXiv.org.
    5. Moret, Fabio & Pinson, Pierre & Papakonstantinou, Athanasios, 2020. "Heterogeneous risk preferences in community-based electricity markets," European Journal of Operational Research, Elsevier, vol. 287(1), pages 36-48.
    6. repec:cte:wsrepe:38369 is not listed on IDEAS
    7. Falbo, Paolo & Ruiz, Carlos, 2019. "Optimal sales-mix and generation plan in a two-stage electricity market," Energy Economics, Elsevier, vol. 78(C), pages 598-614.
    8. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    9. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    10. Morteza Neishaboori & Alireza Arshadi Khamseh & Abolfazl Mirzazadeh & Mostafa Esmaeeli & Hamed Davari Ardakani, 2024. "Stochastic optimal pricing for retail electricity considering demand response, renewable energy sources and environmental effects," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(5), pages 435-451, October.
    11. Zheng, Kedi & Chen, Huiyao & Wang, Yi & Chen, Qixin, 2022. "Data-driven financial transmission right scenario generation and speculation," Energy, Elsevier, vol. 238(PC).
    12. Xiaojia Guo & Alexandros Beskos & Afzal Siddiqui, 2016. "The natural hedge of a gas-fired power plant," Computational Management Science, Springer, vol. 13(1), pages 63-86, January.
    13. Mahmood Hosseini Imani & Shaghayegh Zalzar & Amir Mosavi & Shahaboddin Shamshirband, 2018. "Strategic Behavior of Retailers for Risk Reduction and Profit Increment via Distributed Generators and Demand Response Programs," Energies, MDPI, vol. 11(6), pages 1-24, June.
    14. Tao Chen & Qais Alsafasfeh & Hajir Pourbabak & Wencong Su, 2017. "The Next-Generation U.S. Retail Electricity Market with Customers and Prosumers—A Bibliographical Survey," Energies, MDPI, vol. 11(1), pages 1-17, December.
    15. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    16. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    17. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    18. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    19. Giovanni Masala & Filippo Petroni, 2023. "Drawdown risk measures for asset portfolios with high frequency data," Annals of Finance, Springer, vol. 19(2), pages 265-289, June.
    20. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    21. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2110.02735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.