IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i1p43-54.html
   My bibliography  Save this article

A generalized Benders decomposition approach for the optimal design of a local multi-energy system

Author

Listed:
  • Liu, Bingqian
  • Bissuel, Côme
  • Courtot, François
  • Gicquel, Céline
  • Quadri, Dominique

Abstract

A local multi-energy system (LMES) is a decentralized energy system producing energy under multiple forms to satisfy the energy demand of a set of buildings located in its neighborhood. We study the problem of optimally designing an LMES over a multi-phase horizon. This problem is formulated as a large-size mixed-integer linear program with a block-decomposable structure involving mixed-integer sub-problems. We propose a new way to adapt a recently published framework for generalized Benders decomposition to our problem. This is done by exploiting the fact that the constraint matrix appearing in front of the first-stage variables in the coupling constraints is non-negative. The obtained generalized Benders decomposition algorithm relies on the use of a new type of non-convex Benders cuts involving indicator functions. We first prove that, under the assumption that all first-stage decision variables are integer and bounded, the finite and optimal convergence of our algorithm is guaranteed in theory. We then investigate how to obtain a good numerical performance in practice. Finally, we report the results of a computational study carried out on a real-life case study. These results show that the proposed algorithm clearly outperforms both a mathematical programming solver directly solving the problem as a whole and a state-of-the art hierarchical decomposition algorithm.

Suggested Citation

  • Liu, Bingqian & Bissuel, Côme & Courtot, François & Gicquel, Céline & Quadri, Dominique, 2024. "A generalized Benders decomposition approach for the optimal design of a local multi-energy system," European Journal of Operational Research, Elsevier, vol. 318(1), pages 43-54.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:43-54
    DOI: 10.1016/j.ejor.2024.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724003515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    2. Gendron, Bernard & Scutellà, Maria Grazia & Garroppo, Rosario G. & Nencioni, Gianfranco & Tavanti, Luca, 2016. "A branch-and-Benders-cut method for nonlinear power design in green wireless local area networks," European Journal of Operational Research, Elsevier, vol. 255(1), pages 151-162.
    3. Jonathan H. Owen & Sanjay Mehrotra, 2002. "On the Value of Binary Expansions for General Mixed-Integer Linear Programs," Operations Research, INFORMS, vol. 50(5), pages 810-819, October.
    4. John N. Hooker, 2019. "Logic-Based Benders Decomposition for Large-Scale Optimization," Springer Optimization and Its Applications, in: Jesús M. Velásquez-Bermúdez & Marzieh Khakifirooz & Mahdi Fathi (ed.), Large Scale Optimization in Supply Chains and Smart Manufacturing, pages 1-26, Springer.
    5. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    6. Jennings, Mark & Fisk, David & Shah, Nilay, 2014. "Modelling and optimization of retrofitting residential energy systems at the urban scale," Energy, Elsevier, vol. 64(C), pages 220-233.
    7. Forbes, M.A. & Harris, M.G. & Jansen, H.M. & van der Schoot, F.A. & Taimre, T., 2024. "Combining optimisation and simulation using logic-based Benders decomposition," European Journal of Operational Research, Elsevier, vol. 312(3), pages 840-854.
    8. Richarz, Jan & Henn, Sarah & Osterhage, Tanja & Müller, Dirk, 2022. "Optimal scheduling of modernization measures for typical non-residential buildings," Energy, Elsevier, vol. 238(PA).
    9. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    10. Gustavo Angulo & Shabbir Ahmed & Santanu S. Dey, 2016. "Improving the Integer L-Shaped Method," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 483-499, August.
    11. Lewis Ntaimo, 2010. "Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse," Operations Research, INFORMS, vol. 58(1), pages 229-243, February.
    12. Elsido, Cristina & Bischi, Aldo & Silva, Paolo & Martelli, Emanuele, 2017. "Two-stage MINLP algorithm for the optimal synthesis and design of networks of CHP units," Energy, Elsevier, vol. 121(C), pages 403-426.
    13. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    14. Rui Chen & James Luedtke, 2022. "On Generating Lagrangian Cuts for Two-Stage Stochastic Integer Programs," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2332-2349, July.
    15. Lewis Ntaimo, 2013. "Fenchel decomposition for stochastic mixed-integer programming," Journal of Global Optimization, Springer, vol. 55(1), pages 141-163, January.
    16. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    17. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    2. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    3. Pavlo Glushko & Csaba I. Fábián & Achim Koberstein, 2022. "An L-shaped method with strengthened lift-and-project cuts," Computational Management Science, Springer, vol. 19(4), pages 539-565, October.
    4. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    5. Clavijo López, Christian & Crama, Yves & Pironet, Thierry & Semet, Frédéric, 2024. "Multi-period distribution networks with purchase commitment contracts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 556-572.
    6. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    7. Yantong Li & Jean-François Côté & Leandro Callegari-Coelho & Peng Wu, 2022. "Novel Formulations and Logic-Based Benders Decomposition for the Integrated Parallel Machine Scheduling and Location Problem," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1048-1069, March.
    8. Özgün Elçi & John Hooker, 2022. "Stochastic Planning and Scheduling with Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2428-2442, September.
    9. Teodor Gabriel Crainic & Mike Hewitt & Francesca Maggioni & Walter Rei, 2021. "Partial Benders Decomposition: General Methodology and Application to Stochastic Network Design," Transportation Science, INFORMS, vol. 55(2), pages 414-435, March.
    10. MacNeil, Moira & Bodur, Merve, 2024. "Leveraging decision diagrams to solve two-stage stochastic programs with binary recourse and logical linking constraints," European Journal of Operational Research, Elsevier, vol. 315(1), pages 228-241.
    11. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    12. Moreno, Alfredo & Munari, Pedro & Alem, Douglas, 2019. "A branch-and-Benders-cut algorithm for the Crew Scheduling and Routing Problem in road restoration," European Journal of Operational Research, Elsevier, vol. 275(1), pages 16-34.
    13. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric & Van Woensel, Tom, 2020. "A Benders decomposition-based approach for logistics service network design," European Journal of Operational Research, Elsevier, vol. 286(2), pages 523-537.
    14. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    15. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    16. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    17. Jiateng Yin & Lixing Yang & Andrea D’Ariano & Tao Tang & Ziyou Gao, 2022. "Integrated Backup Rolling Stock Allocation and Timetable Rescheduling with Uncertain Time-Variant Passenger Demand Under Disruptive Events," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3234-3258, November.
    18. Santos, Daniel & Marques, Inês, 2022. "Designing master surgery schedules with downstream unit integration via stochastic programming," European Journal of Operational Research, Elsevier, vol. 299(3), pages 834-852.
    19. Can Li & Ignacio E. Grossmann, 2019. "A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables," Journal of Global Optimization, Springer, vol. 75(2), pages 247-272, October.
    20. Cheng Guo & Merve Bodur & Dionne M. Aleman & David R. Urbach, 2021. "Logic-Based Benders Decomposition and Binary Decision Diagram Based Approaches for Stochastic Distributed Operating Room Scheduling," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1551-1569, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:1:p:43-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.