IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i2p1048-1069.html
   My bibliography  Save this article

Novel Formulations and Logic-Based Benders Decomposition for the Integrated Parallel Machine Scheduling and Location Problem

Author

Listed:
  • Yantong Li

    (School of Maritime Economics and Management, Dalian Maritime University, 116026 Dalian, China)

  • Jean-François Côté

    (CIRRELT, Université Laval, Québec G1V 0A6, Canada)

  • Leandro Callegari-Coelho

    (CIRRELT, Université Laval, Québec G1V 0A6, Canada)

  • Peng Wu

    (School of Economics and Management, Fuzhou University, 350116 Fuzhou, China)

Abstract

We investigate the discrete parallel machine scheduling and location problem, which consists of locating multiple machines to a set of candidate locations, assigning jobs from different locations to the located machines, and sequencing the assigned jobs. The objective is to minimize the maximum completion time of all jobs, that is, the makespan. Though the problem is of theoretical significance with a wide range of practical applications, it has not been well studied as reported in the literature. For this problem, we first propose three new mixed-integer linear programs that outperform state-of-the-art formulations. Then, we develop a new logic-based Benders decomposition algorithm for practical-sized instances, which splits the problem into a master problem that determines machine locations and job assignments to machines and a subproblem that sequences jobs on each machine. The master problem is solved by a branch-and-cut procedure that operates on a single search tree. Once an incumbent solution to the master problem is found, the subproblem is solved to generate cuts that are dynamically added to the master problem. A generic no-good cut is first proposed, which is later improved by some strengthening techniques. Two optimality cuts are also developed based on optimality conditions of the subproblem and improved by strengthening techniques. Numerical results on small-sized instances show that the proposed formulations outperform state-of-the-art ones. Computational results on 1,400 benchmark instances with up to 300 jobs, 50 machines, and 300 locations demonstrate the effectiveness and efficiency of the algorithm compared with current approaches. Summary of Contribution: This paper employs operations research methods and computing techniques to address an NP-hard combinatorial optimization problem: the parallel discrete machine scheduling and location problem. The problem is of practical significance but has not been well studied in the literature. For the problem, we formulate three novel mixed-integer linear programs that outperform state-of-the-art formulations and develop a new logic-based Benders decomposition algorithm. Extensive computational experiments on 1,400 benchmark instances with up to 300 jobs, 50 machines, and 300 locations are conducted to evaluate the performance of the proposed models and algorithms.

Suggested Citation

  • Yantong Li & Jean-François Côté & Leandro Callegari-Coelho & Peng Wu, 2022. "Novel Formulations and Logic-Based Benders Decomposition for the Integrated Parallel Machine Scheduling and Location Problem," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1048-1069, March.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:1048-1069
    DOI: 10.1287/ijoc.2021.1113
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1113
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. John N. Hooker, 2019. "Logic-Based Benders Decomposition for Large-Scale Optimization," Springer Optimization and Its Applications, in: Jesús M. Velásquez-Bermúdez & Marzieh Khakifirooz & Mahdi Fathi (ed.), Large Scale Optimization in Supply Chains and Smart Manufacturing, pages 1-26, Springer.
    3. Mladenovic, Nenad & Brimberg, Jack & Hansen, Pierre & Moreno-Perez, Jose A., 2007. "The p-median problem: A survey of metaheuristic approaches," European Journal of Operational Research, Elsevier, vol. 179(3), pages 927-939, June.
    4. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    5. Beezão, Andreza Cristina & Cordeau, Jean-François & Laporte, Gilbert & Yanasse, Horacio Hideki, 2017. "Scheduling identical parallel machines with tooling constraints," European Journal of Operational Research, Elsevier, vol. 257(3), pages 834-844.
    6. Ming Liu & Xin Liu & E. Zhang & Feng Chu & Chengbin Chu, 2019. "Scenario-based heuristic to two-stage stochastic program for the parallel machine ScheLoc problem," International Journal of Production Research, Taylor & Francis Journals, vol. 57(6), pages 1706-1723, March.
    7. Onur Ozturk & Mehmet A. Begen & Gregory S. Zaric, 2017. "A branch and bound algorithm for scheduling unit size jobs on parallel batching machines to minimize makespan," International Journal of Production Research, Taylor & Francis Journals, vol. 55(6), pages 1815-1831, March.
    8. Corinna Heßler & Kaouthar Deghdak, 2017. "Discrete parallel machine makespan ScheLoc problem," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1159-1186, November.
    9. Gohram Baloch & Fatma Gzara, 2020. "Strategic Network Design for Parcel Delivery with Drones Under Competition," Transportation Science, INFORMS, vol. 54(1), pages 204-228, January.
    10. SADYKOV, Ruslan & WOLSEY, Laurence A., 2006. "Integer programming and constraint programming in solving a multimachine assignment scheduling problem with deadlines and release dates," LIDAM Reprints CORE 1854, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    12. Lixin Tang & Yanyan Zhang, 2011. "A new Lagrangian Relaxation Algorithm for scheduling dissimilar parallel machines with release dates," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(7), pages 1133-1141.
    13. Hamdi Dkhil & Adnan Yassine & Habib Chabchoub, 2018. "Multi-objective optimization of the integrated problem of location assignment and straddle carrier scheduling in maritime container terminal at import," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(2), pages 247-269, February.
    14. David Pisinger & Mikkel Sigurd, 2007. "Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 36-51, February.
    15. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    16. Ruslan Sadykov & Laurence A. Wolsey, 2006. "Integer Programming and Constraint Programming in Solving a Multimachine Assignment Scheduling Problem with Deadlines and Release Dates," INFORMS Journal on Computing, INFORMS, vol. 18(2), pages 209-217, May.
    17. Lancia, Giuseppe, 2000. "Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 120(2), pages 277-288, January.
    18. Rauchecker, Gerhard & Schryen, Guido, 2019. "An exact branch-and-price algorithm for scheduling rescue units during disaster response," European Journal of Operational Research, Elsevier, vol. 272(1), pages 352-363.
    19. Janiak, Adam & Janiak, Władysław A. & Krysiak, Tomasz & Kwiatkowski, Tomasz, 2015. "A survey on scheduling problems with due windows," European Journal of Operational Research, Elsevier, vol. 242(2), pages 347-357.
    20. Mohammad M. Fazel-Zarandi & J. Christopher Beck, 2012. "Using Logic-Based Benders Decomposition to Solve the Capacity- and Distance-Constrained Plant Location Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 387-398, August.
    21. Fanjul-Peyro, Luis & Perea, Federico & Ruiz, Rubén, 2017. "Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources," European Journal of Operational Research, Elsevier, vol. 260(2), pages 482-493.
    22. Ahmad I. Z. Jarrah & Jonathan F. Bard & Anura H. deSilva, 1994. "Equipment Selection and Machine Scheduling in General Mail Facilities," Management Science, INFORMS, vol. 40(8), pages 1049-1068, August.
    23. Vallada, Eva & Ruiz, Rubén, 2011. "A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times," European Journal of Operational Research, Elsevier, vol. 211(3), pages 612-622, June.
    24. Mauro Dell'Amico & Manuel Iori & Silvano Martello & Michele Monaci, 2008. "Heuristic and Exact Algorithms for the Identical Parallel Machine Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 333-344, August.
    25. Naderi, Bahman & Roshanaei, Vahid, 2020. "Branch-Relax-and-Check: A tractable decomposition method for order acceptance and identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 286(3), pages 811-827.
    26. Tony T. Tran & Arthur Araujo & J. Christopher Beck, 2016. "Decomposition Methods for the Parallel Machine Scheduling Problem with Setups," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 83-95, February.
    27. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
    28. Venditti, Luca & Pacciarelli, Dario & Meloni, Carlo, 2010. "A tabu search algorithm for scheduling pharmaceutical packaging operations," European Journal of Operational Research, Elsevier, vol. 202(2), pages 538-546, April.
    29. Chandra, Pankaj & Fisher, Marshall L., 1994. "Coordination of production and distribution planning," European Journal of Operational Research, Elsevier, vol. 72(3), pages 503-517, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    2. Hosseini, Amir & Otto, Alena & Pesch, Erwin, 2024. "Scheduling in manufacturing with transportation: Classification and solution techniques," European Journal of Operational Research, Elsevier, vol. 315(3), pages 821-843.
    3. Parada, Lucas & Legault, Robin & Côté, Jean-François & Gendreau, Michel, 2024. "A disaggregated integer L-shaped method for stochastic vehicle routing problems with monotonic recourse," European Journal of Operational Research, Elsevier, vol. 318(2), pages 520-533.
    4. Mao, Zhaofang & Fu, Enyuan & Huang, Dian & Fang, Kan & Chen, Lin, 2024. "Combinatorial Benders decomposition for single machine scheduling in additive manufacturing with two-dimensional packing constraints," European Journal of Operational Research, Elsevier, vol. 317(3), pages 890-905.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    2. Li, Yantong & Côté, Jean-François & Coelho, Leandro C. & Zhang, Chuang & Zhang, Shuai, 2023. "Order assignment and scheduling under processing and distribution time uncertainty," European Journal of Operational Research, Elsevier, vol. 305(1), pages 148-163.
    3. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    4. Giorgi Tadumadze & Simon Emde & Heiko Diefenbach, 2020. "Exact and heuristic algorithms for scheduling jobs with time windows on unrelated parallel machines," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 461-497, June.
    5. Zhang, Zhe & Song, Xiaoling & Huang, Huijung & Zhou, Xiaoyang & Yin, Yong, 2022. "Logic-based Benders decomposition method for the seru scheduling problem with sequence-dependent setup time and DeJong’s learning effect," European Journal of Operational Research, Elsevier, vol. 297(3), pages 866-877.
    6. Jesús Isaac Vázquez-Serrano & Leopoldo Eduardo Cárdenas-Barrón & Rodrigo E. Peimbert-García, 2021. "Agent Scheduling in Unrelated Parallel Machines with Sequence- and Agent–Machine–Dependent Setup Time Problem," Mathematics, MDPI, vol. 9(22), pages 1-34, November.
    7. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    8. Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.
    9. Hassan Zohali & Bahman Naderi & Vahid Roshanaei, 2022. "Solving the Type-2 Assembly Line Balancing with Setups Using Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 315-332, January.
    10. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Omnichannel facility location and fulfillment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 187-209.
    11. Stefano Gualandi & Federico Malucelli, 2012. "Exact Solution of Graph Coloring Problems via Constraint Programming and Column Generation," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 81-100, February.
    12. Maximilian Moser & Nysret Musliu & Andrea Schaerf & Felix Winter, 2022. "Exact and metaheuristic approaches for unrelated parallel machine scheduling," Journal of Scheduling, Springer, vol. 25(5), pages 507-534, October.
    13. Bahman Naderi & Vahid Roshanaei & Mehmet A. Begen & Dionne M. Aleman & David R. Urbach, 2021. "Increased Surgical Capacity without Additional Resources: Generalized Operating Room Planning and Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2608-2635, August.
    14. Michels, Adalberto Sato & Lopes, Thiago Cantos & Sikora, Celso Gustavo Stall & Magatão, Leandro, 2019. "A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 278(3), pages 796-808.
    15. Özgün Elçi & John Hooker, 2022. "Stochastic Planning and Scheduling with Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2428-2442, September.
    16. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    17. Qinxiao Yu & Yossiri Adulyasak & Louis-Martin Rousseau & Ning Zhu & Shoufeng Ma, 2022. "Team Orienteering with Time-Varying Profit," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 262-280, January.
    18. Elvin Coban & J. Hooker, 2013. "Single-facility scheduling by logic-based Benders decomposition," Annals of Operations Research, Springer, vol. 210(1), pages 245-272, November.
    19. Stefano Gualandi & Federico Malucelli, 2013. "Constraint Programming-based Column Generation," Annals of Operations Research, Springer, vol. 204(1), pages 11-32, April.
    20. Liu, Bingqian & Bissuel, Côme & Courtot, François & Gicquel, Céline & Quadri, Dominique, 2024. "A generalized Benders decomposition approach for the optimal design of a local multi-energy system," European Journal of Operational Research, Elsevier, vol. 318(1), pages 43-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:2:p:1048-1069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.