IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v315y2024i1p228-241.html
   My bibliography  Save this article

Leveraging decision diagrams to solve two-stage stochastic programs with binary recourse and logical linking constraints

Author

Listed:
  • MacNeil, Moira
  • Bodur, Merve

Abstract

We generalize an existing binary decision diagram-based (BDD-based) approach of Lozano and Smith (MP, 2022) to solve a special class of two-stage stochastic programs (2SPs) with binary recourse, where the first-stage decisions impact the second-stage constraints. First, we extend the second-stage problem to a more general setting where logical expressions of the first-stage solutions enforce constraints in the second stage. Then, as our primary contribution, we introduce a complementary problem, that appears more naturally for many of the same applications of the former approach, and a distinct BDD-based solution method, that is more efficient than the existing BDD-based approach on commonly applicable problem classes. In the novel problem, second-stage costs, rather than constraints, are impacted by expressions of the first-stage decisions. In both settings, we convexify the second-stage problems using BDDs and parameterize either the BDD arc costs or capacities with first-stage solutions. We extend this work by incorporating conditional value-at-risk and propose the first decomposition method for 2SP with binary recourse and a risk measure. We apply these methods to a novel stochastic problem, namely stochastic minimum dominating set problem, and present numerical results to support their effectiveness.

Suggested Citation

  • MacNeil, Moira & Bodur, Merve, 2024. "Leveraging decision diagrams to solve two-stage stochastic programs with binary recourse and logical linking constraints," European Journal of Operational Research, Elsevier, vol. 315(1), pages 228-241.
  • Handle: RePEc:eee:ejores:v:315:y:2024:i:1:p:228-241
    DOI: 10.1016/j.ejor.2023.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723009542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.12.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gustavo Angulo & Shabbir Ahmed & Santanu S. Dey, 2016. "Improving the Integer L-Shaped Method," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 483-499, August.
    2. Lewis Ntaimo, 2010. "Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse," Operations Research, INFORMS, vol. 58(1), pages 229-243, February.
    3. Guglielmo Lulli & Suvrajeet Sen, 2004. "A Branch-and-Price Algorithm for Multistage Stochastic Integer Programming with Application to Stochastic Batch-Sizing Problems," Management Science, INFORMS, vol. 50(6), pages 786-796, June.
    4. Can Li & Ignacio E. Grossmann, 2019. "A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables," Journal of Global Optimization, Springer, vol. 75(2), pages 247-272, October.
    5. Ayşe N. Arslan & Boris Detienne, 2022. "Decomposition-Based Approaches for a Class of Two-Stage Robust Binary Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 857-871, March.
    6. Lewis Ntaimo, 2013. "Fenchel decomposition for stochastic mixed-integer programming," Journal of Global Optimization, Springer, vol. 55(1), pages 141-163, January.
    7. Lin, Geng & Guan, Jian & Feng, Huibin, 2018. "An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 199-209.
    8. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    9. David Bergman & Andre A. Cire, 2018. "Discrete Nonlinear Optimization by State-Space Decompositions," Management Science, INFORMS, vol. 64(10), pages 4700-4720, October.
    10. Margarita P. Castro & Andre A. Cire & J. Christopher Beck, 2022. "Decision Diagrams for Discrete Optimization: A Survey of Recent Advances," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2271-2295, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onur Tavaslıoğlu & Oleg A. Prokopyev & Andrew J. Schaefer, 2019. "Solving Stochastic and Bilevel Mixed-Integer Programs via a Generalized Value Function," Operations Research, INFORMS, vol. 67(6), pages 1659-1677, November.
    2. Can Li & Ignacio E. Grossmann, 2019. "A generalized Benders decomposition-based branch and cut algorithm for two-stage stochastic programs with nonconvex constraints and mixed-binary first and second stage variables," Journal of Global Optimization, Springer, vol. 75(2), pages 247-272, October.
    3. Cheng Guo & Merve Bodur & Dionne M. Aleman & David R. Urbach, 2021. "Logic-Based Benders Decomposition and Binary Decision Diagram Based Approaches for Stochastic Distributed Operating Room Scheduling," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1551-1569, October.
    4. İ. Esra Büyüktahtakın, 2022. "Stage-t scenario dominance for risk-averse multi-stage stochastic mixed-integer programs," Annals of Operations Research, Springer, vol. 309(1), pages 1-35, February.
    5. Pavlo Glushko & Csaba I. Fábián & Achim Koberstein, 2022. "An L-shaped method with strengthened lift-and-project cuts," Computational Management Science, Springer, vol. 19(4), pages 539-565, October.
    6. Zhen, Lu & He, Xueting & Zhuge, Dan & Wang, Shuaian, 2024. "Primal decomposition for berth planning under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    7. Rui Chen & James Luedtke, 2022. "On Generating Lagrangian Cuts for Two-Stage Stochastic Integer Programs," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2332-2349, July.
    8. Hossein Hashemi Doulabi & Shabbir Ahmed & George Nemhauser, 2022. "State-Variable Modeling for a Class of Two-Stage Stochastic Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 354-369, January.
    9. Saravanan Venkatachalam & Lewis Ntaimo, 2023. "Integer set reduction for stochastic mixed-integer programming," Computational Optimization and Applications, Springer, vol. 85(1), pages 181-211, May.
    10. Yan Deng & Shabbir Ahmed & Siqian Shen, 2018. "Parallel Scenario Decomposition of Risk-Averse 0-1 Stochastic Programs," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 90-105, February.
    11. Valicka, Christopher G. & Garcia, Deanna & Staid, Andrea & Watson, Jean-Paul & Hackebeil, Gabriel & Rathinam, Sivakumar & Ntaimo, Lewis, 2019. "Mixed-integer programming models for optimal constellation scheduling given cloud cover uncertainty," European Journal of Operational Research, Elsevier, vol. 275(2), pages 431-445.
    12. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    13. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    14. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    15. Li, Bo & Hou, Peng-Wen & Chen, Ping & Li, Qing-Hua, 2016. "Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer," International Journal of Production Economics, Elsevier, vol. 178(C), pages 154-168.
    16. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    17. Mínguez, R. & Conejo, A.J. & García-Bertrand, R., 2011. "Reliability and decomposition techniques to solve certain class of stochastic programming problems," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 314-323.
    18. Jia Liu & Cuixia Li, 2023. "Dynamic Game Analysis on Cooperative Advertising Strategy in a Manufacturer-Led Supply Chain with Risk Aversion," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    19. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    20. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:1:p:228-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.