IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1601.02149.html
   My bibliography  Save this paper

Computing semiparametric bounds on the expected payments of insurance instruments via column generation

Author

Listed:
  • Robert Howley
  • Robert Storer
  • Juan Vera
  • Luis F. Zuluaga

Abstract

It has been recently shown that numerical semiparametric bounds on the expected payoff of fi- nancial or actuarial instruments can be computed using semidefinite programming. However, this approach has practical limitations. Here we use column generation, a classical optimization technique, to address these limitations. From column generation, it follows that practical univari- ate semiparametric bounds can be found by solving a series of linear programs. In addition to moment information, the column generation approach allows the inclusion of extra information about the random variable; for instance, unimodality and continuity, as well as the construction of corresponding worst/best-case distributions in a simple way.

Suggested Citation

  • Robert Howley & Robert Storer & Juan Vera & Luis F. Zuluaga, 2016. "Computing semiparametric bounds on the expected payments of insurance instruments via column generation," Papers 1601.02149, arXiv.org.
  • Handle: RePEc:arx:papers:1601.02149
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1601.02149
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jaimungal, Sebastian & Wang, Tao, 2006. "Catastrophe options with stochastic interest rates and compound Poisson losses," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 469-483, June.
    2. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    3. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    4. Schepper, Ann De & Heijnen, Bart, 2007. "Distribution-free option pricing," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 179-199, March.
    5. Luis F. Zuluaga & Javier F. Peña, 2005. "A Conic Programming Approach to Generalized Tchebycheff Inequalities," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 369-388, May.
    6. Cox, Samuel H. & Fairchild, Joseph R. & Pedersen, Hal W., 2004. "Valuation of structured risk management products," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 259-272, April.
    7. Jansen, K. & Haezendonck, J. & Goovaerts, M. J., 1986. "Upper bounds on stop-loss premiums in case of known moments up to the fourth order," Insurance: Mathematics and Economics, Elsevier, vol. 5(4), pages 315-334, October.
    8. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    9. Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
    10. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    11. Lo, Andrew W., 1987. "Semi-parametric upper bounds for option prices and expected payoffs," Journal of Financial Economics, Elsevier, vol. 19(2), pages 373-387, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wong, Man Hong & Zhang, Shuzhong, 2013. "Computing best bounds for nonlinear risk measures with partial information," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 204-212.
    2. Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
    3. Villegas, Andrés M. & Medaglia, Andrés L. & Zuluaga, Luis F., 2012. "Computing bounds on the expected payoff of Alternative Risk Transfer products," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 271-281.
    4. Wong, Man Hong & Zhang, Shuzhong, 2014. "On distributional robust probability functions and their computations," European Journal of Operational Research, Elsevier, vol. 233(1), pages 23-33.
    5. Derek Singh & Shuzhong Zhang, 2020. "Tight Bounds for a Class of Data-Driven Distributionally Robust Risk Measures," Papers 2010.05398, arXiv.org, revised Oct 2020.
    6. Karthik Natarajan & Melvyn Sim & Joline Uichanco, 2018. "Asymmetry and Ambiguity in Newsvendor Models," Management Science, INFORMS, vol. 64(7), pages 3146-3167, July.
    7. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    8. Cai, Jun & Liu, Fangda & Yin, Mingren, 2024. "Worst-case risk measures of stop-loss and limited loss random variables under distribution uncertainty with applications to robust reinsurance," European Journal of Operational Research, Elsevier, vol. 318(1), pages 310-326.
    9. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    10. Qiaoming Han & Donglei Du & Luis F. Zuluaga, 2014. "Technical Note---A Risk- and Ambiguity-Averse Extension of the Max-Min Newsvendor Order Formula," Operations Research, INFORMS, vol. 62(3), pages 535-542, June.
    11. Kim, Hwa-Sung & Kim, Bara & Kim, Jerim, 2014. "Pricing perpetual American CatEPut options when stock prices are correlated with catastrophe losses," Economic Modelling, Elsevier, vol. 41(C), pages 15-22.
    12. Javier Pena & Juan Vera & Luis Zuluaga, 2010. "Static-arbitrage lower bounds on the prices of basket options via linear programming," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 819-827.
    13. Wu, Yang-Che & Chung, San-Lin, 2010. "Catastrophe risk management with counterparty risk using alternative instruments," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 234-245, October.
    14. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    15. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    16. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    17. Wang, Xingchun, 2019. "Valuation of new-designed contracts for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    18. Wang, Guanying & Wang, Xingchun & Shao, Xinjian, 2022. "Exchange options for catastrophe risk management," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    19. Burnecki, Krzysztof & Giuricich, Mario Nicoló & Palmowski, Zbigniew, 2019. "Valuation of contingent convertible catastrophe bonds — The case for equity conversion," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 238-254.
    20. Liu, Guoqing & Li, Wenbo V., 2009. "Moment bounds for truncated random variables," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1951-1956, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1601.02149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.