IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v274y2019i3p1090-1101.html
   My bibliography  Save this article

Solving the geometric firefighter routing problem via integer programming

Author

Listed:
  • O. Zambon, Mauricio J.
  • J. de Rezende, Pedro
  • C. de Souza, Cid

Abstract

In this paper, we introduce the Geometric Firefighter Routing Problem (gfrp) as a variant of the Geometric Firefighter Problem aiming to better model more realistic situations. We design an exact algorithm based on a core Linear Integer Programming formulation and propose additional sets of valid constraints to strengthen it. The algorithm also includes primal heuristics, and preprocessing procedures to reduce the model size. Besides, we generate two large sets of instances, tailored to the gfrp, and report on comprehensive experimental results for them. Thorough analysis validate the effectiveness of each major step of the algorithm and the overall performance of our approach.

Suggested Citation

  • O. Zambon, Mauricio J. & J. de Rezende, Pedro & C. de Souza, Cid, 2019. "Solving the geometric firefighter routing problem via integer programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1090-1101.
  • Handle: RePEc:eee:ejores:v:274:y:2019:i:3:p:1090-1101
    DOI: 10.1016/j.ejor.2018.10.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718308907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.10.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weifan Wang & Stephen Finbow & Ping Wang, 2014. "A lower bound of the surviving rate of a planar graph with girth at least seven," Journal of Combinatorial Optimization, Springer, vol. 27(4), pages 621-642, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruno R. Gutiérrez-De-La-Paz & Jesús García-Díaz & Rolando Menchaca-Méndez & Mauro A. Montenegro-Meza & Ricardo Menchaca-Méndez & Omar A. Gutiérrez-De-La-Paz, 2022. "The Moving Firefighter Problem," Mathematics, MDPI, vol. 11(1), pages 1-15, December.
    2. Avci, Mualla Gonca & Avci, Mustafa & Battarra, Maria & Erdoğan, Güneş, 2024. "The wildfire suppression problem with multiple types of resources," European Journal of Operational Research, Elsevier, vol. 316(2), pages 488-502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Wu & Jiangxu Kong & Weifan Wang, 2016. "The 2-surviving rate of planar graphs without 5-cycles," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1479-1492, May.
    2. Kong, Jiangxu & Wang, Yiqiao & Hu, Jiacheng & Wang, Yang & Wang, Weifan, 2023. "Plane graphs of diameter two are 2-optimal," Applied Mathematics and Computation, Elsevier, vol. 441(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:274:y:2019:i:3:p:1090-1101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.