IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3547-d1438496.html
   My bibliography  Save this article

Control Strategy for Wind Farms-Energy Storage Participation in Primary Frequency Regulation Considering Wind Turbine Operation State

Author

Listed:
  • Linlin Yu

    (Economic Research Institute of State Grid Henan Electric Power Company, Zhengzhou 450052, China)

  • Jiafeng Wu

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Yuming Cheng

    (Economic Research Institute of State Grid Henan Electric Power Company, Zhengzhou 450052, China)

  • Gaojun Meng

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Shuyu Chen

    (Economic Research Institute of State Grid Henan Electric Power Company, Zhengzhou 450052, China)

  • Yang Lu

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

  • Ke Xu

    (School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

Abstract

With the continuous improvement of wind power penetration in the power system, the volatility and unpredictability of wind power generation have increased the burden of system frequency regulation. With its flexible control mode and fast power adjustment speed, energy storage has obvious advantages in participating in power grid frequency regulation. Therefore, this paper studies the control strategy of wind energy storage combined with primary frequency regulation and proposes a control method of wind energy storage combined with primary frequency regulation based on the operation state of wind turbines. This paper analyzes the reserve power and rotor reserve kinetic energy of wind turbines operating in different wind speed ranges, introduces the fan frequency regulation operation state coefficient to quantify the real-time frequency regulation ability of the unit, regards the fan and energy storage system as independent frequency regulation sources, and designs the control strategy of joint frequency regulation of wind and storage in different wind speed ranges. The energy storage system is employed to participate in frequency control in the low-wind-speed range, thereby addressing the “blind spot” issue of wind turbine unit frequency control alone. In the medium- and high-wind-speed ranges, the real-time complementary output of wind and energy storage power is achieved by assigning weights based on the frequency control operation status coefficient. Finally, the effectiveness of the joint frequency modulation control strategy of wind storage in low-, medium-, and high-wind-speed regions is verified in the simulation model.

Suggested Citation

  • Linlin Yu & Jiafeng Wu & Yuming Cheng & Gaojun Meng & Shuyu Chen & Yang Lu & Ke Xu, 2024. "Control Strategy for Wind Farms-Energy Storage Participation in Primary Frequency Regulation Considering Wind Turbine Operation State," Energies, MDPI, vol. 17(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3547-:d:1438496
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    2. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    4. Wang, Xiaodi & Hao, Yan & Yang, Wendong, 2024. "Novel wind power ensemble forecasting system based on mixed-frequency modeling and interpretable base model selection strategy," Energy, Elsevier, vol. 297(C).
    5. Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
    6. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    7. Liu, Cheng & Wang, Wei & Wang, Zhixia & Ding, Bei & Wu, Zhiqiang & Feng, Jingjing, 2024. "Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting," Applied Energy, Elsevier, vol. 365(C).
    8. Christopher Jung, 2024. "Recent Development and Future Perspective of Wind Power Generation," Energies, MDPI, vol. 17(21), pages 1-5, October.
    9. Zixiang Yan & Wen Zhou & Jinxiao Li & Xuedan Zhu & Yuxin Zang & Liuyi Zhang, 2024. "Skillful Seasonal Prediction of Global Onshore Wind Resources in SIDRI-ESS V1.0," Sustainability, MDPI, vol. 16(17), pages 1-16, September.
    10. Kim, Daeyoung & Ryu, Geonhwa & Moon, Chaejoo & Kim, Bumsuk, 2024. "Accuracy of a short-term wind power forecasting model based on deep learning using LiDAR-SCADA integration: A case study of the 400-MW Anholt offshore wind farm," Applied Energy, Elsevier, vol. 373(C).
    11. Bhagwan, N. & Evans, M., 2023. "A review of industry 4.0 technologies used in the production of energy in China, Germany, and South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Avci, Mualla Gonca & Avci, Mustafa & Battarra, Maria & Erdoğan, Güneş, 2024. "The wildfire suppression problem with multiple types of resources," European Journal of Operational Research, Elsevier, vol. 316(2), pages 488-502.
    13. Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
    14. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    15. Bashir, Hassan & Sibtain, Muhammad & Hanay, Özge & Azam, Muhammad Imran & Qurat-ul-Ain, & Saleem, Snoober, 2023. "Decomposition and Harris hawks optimized multivariate wind speed forecasting utilizing sequence2sequence-based spatiotemporal attention," Energy, Elsevier, vol. 278(PB).
    16. Jian Zhu & Zhiyuan Zhao & Xiaoran Zheng & Zhao An & Qingwu Guo & Zhikai Li & Jianling Sun & Yuanjun Guo, 2023. "Time-Series Power Forecasting for Wind and Solar Energy Based on the SL-Transformer," Energies, MDPI, vol. 16(22), pages 1-15, November.
    17. Berny Carrera & Kwanho Kim, 2024. "Comparative Analysis of Machine Learning Techniques in Predicting Wind Power Generation: A Case Study of 2018–2021 Data from Guatemala," Energies, MDPI, vol. 17(13), pages 1-27, June.
    18. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    19. Shin, Heesoo & Rüttgers, Mario & Lee, Sangseung, 2023. "Effects of spatiotemporal correlations in wind data on neural network-based wind predictions," Energy, Elsevier, vol. 279(C).
    20. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3547-:d:1438496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.