IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v23y2012i1d10.1007_s10878-010-9337-3.html
   My bibliography  Save this article

Improving an exact approach for solving separable integer quadratic knapsack problems

Author

Listed:
  • Federico Della Croce

    (Politecnico di Torino)

  • Dominique Quadri

    (Université d’Avignon)

Abstract

We consider the specially structured (pure) integer Quadratic Multi-Knapsack Problem (QMKP) tackled in the paper “Exact solution methods to solve large scale integer quadratic knapsack problems” by D. Quadri, E. Soutif and P. Tolla (2009), recently appeared on this journal, where the problem is solved by transforming it into an equivalent 0–1 linearized Multi-Knapsack Problem (MKP). We show that, by taking advantage of the structure of the transformed (MKP), it is possible to derive an effective variable fixing procedure leading to an improved branch-and-bound approach. This procedure reduces dramatically the resulting linear problem size inducing an impressive improvement in the performances of the related branch and bound approach when compared to the results of the approach proposed by D. Quadri, E. Soutif and P. Tolla.

Suggested Citation

  • Federico Della Croce & Dominique Quadri, 2012. "Improving an exact approach for solving separable integer quadratic knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 23(1), pages 21-28, January.
  • Handle: RePEc:spr:jcomop:v:23:y:2012:i:1:d:10.1007_s10878-010-9337-3
    DOI: 10.1007/s10878-010-9337-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-010-9337-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-010-9337-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Faaland, 1974. "An Integer Programming Algorithm for Portfolio Selection," Management Science, INFORMS, vol. 20(10), pages 1376-1384, June.
    2. Korner, Frank, 1990. "On the numerical realization of the exact penalty method for quadratic programming algorithms," European Journal of Operational Research, Elsevier, vol. 46(3), pages 404-408, June.
    3. Fred Glover, 1975. "Improved Linear Integer Programming Formulations of Nonlinear Integer Problems," Management Science, INFORMS, vol. 22(4), pages 455-460, December.
    4. D. Quadri & E. Soutif & P. Tolla, 2009. "Exact solution method to solve large scale integer quadratic multidimensional knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 157-167, February.
    5. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    6. Duan Li & Xiaoling Sun, 2006. "Nonlinear Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-32995-6, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Quadri & E. Soutif & P. Tolla, 2009. "Exact solution method to solve large scale integer quadratic multidimensional knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 157-167, February.
    2. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    3. SYAFITRI, Utami & SARTONO, Bagus & GOOS, Peter, 2015. "D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints," Working Papers 2015003, University of Antwerp, Faculty of Business and Economics.
    4. Bueno, L.F. & Haeser, G. & Kolossoski, O., 2024. "On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1217-1222.
    5. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    6. Dori Hulst & Dick Hertog & Wim Nuijten, 2017. "Robust shift generation in workforce planning," Computational Management Science, Springer, vol. 14(1), pages 115-134, January.
    7. Yokoyama, Ryohei & Kitano, Hiroyuki & Wakui, Tetsuya, 2017. "Optimal operation of heat supply systems with piping network," Energy, Elsevier, vol. 137(C), pages 888-897.
    8. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    9. Longinidis, Pantelis & Georgiadis, Michael C., 2014. "Integration of sale and leaseback in the optimal design of supply chain networks," Omega, Elsevier, vol. 47(C), pages 73-89.
    10. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    11. Unai Aldasoro & María Merino & Gloria Pérez, 2019. "Time consistent expected mean-variance in multistage stochastic quadratic optimization: a model and a matheuristic," Annals of Operations Research, Springer, vol. 280(1), pages 151-187, September.
    12. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    13. Zhang, Jianzhong & Xu, Chengxian, 2010. "Inverse optimization for linearly constrained convex separable programming problems," European Journal of Operational Research, Elsevier, vol. 200(3), pages 671-679, February.
    14. Christodoulos Floudas & Xiaoxia Lin, 2005. "Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications," Annals of Operations Research, Springer, vol. 139(1), pages 131-162, October.
    15. Gupta, Renu & Bandopadhyaya, Lakshmisree & Puri, M. C., 1996. "Ranking in quadratic integer programming problems," European Journal of Operational Research, Elsevier, vol. 95(1), pages 231-236, November.
    16. Angel L. Cedeño & Reinier López Ahuar & José Rojas & Gonzalo Carvajal & César Silva & Juan C. Agüero, 2022. "Model Predictive Control for Photovoltaic Plants with Non-Ideal Energy Storage Using Mixed Integer Linear Programming," Energies, MDPI, vol. 15(17), pages 1-21, September.
    17. Osman, Hany & Demirli, Kudret, 2010. "A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection," International Journal of Production Economics, Elsevier, vol. 124(1), pages 97-105, March.
    18. Mohammadivojdan, Roshanak & Geunes, Joseph, 2018. "The newsvendor problem with capacitated suppliers and quantity discounts," European Journal of Operational Research, Elsevier, vol. 271(1), pages 109-119.
    19. Verbiest, Floor & Cornelissens, Trijntje & Springael, Johan, 2019. "A matheuristic approach for the design of multiproduct batch plants with parallel production lines," European Journal of Operational Research, Elsevier, vol. 273(3), pages 933-947.
    20. Fabio Furini & Emiliano Traversi, 2019. "Theoretical and computational study of several linearisation techniques for binary quadratic problems," Annals of Operations Research, Springer, vol. 279(1), pages 387-411, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:23:y:2012:i:1:d:10.1007_s10878-010-9337-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.