IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v247y2015i3p945-956.html
   My bibliography  Save this article

Scheduling pumpoff operations in onshore oilfields under electric-power constraints

Author

Listed:
  • Camponogara, Eduardo
  • Oliveira, Mateus Dubiela
  • Aguiar, Marco Aurélio Schmitz de

Abstract

In onshore oilfields, several sucker-rod pumps are deployed over a large geographic area to lift oil from the bottom of production wells. Powered by electric rotary machines, the rod pumps operate according to cyclic control policies that alternate between on and off pumping periods which are designed to drive maximum production. This cyclic behavior gives rise to the problem of scheduling pumpoff operations in order to minimize the system power peak and thereby smoothen the power-consumption profile. To this end, this paper develops MILP formulations for the coordination of control policies and their reconfiguration during operations. Following a column-based approach or using integer variables to model the power-consumption profile, the resulting MILP formulations are put to the test in a host of synthetic, but representative oilfields.

Suggested Citation

  • Camponogara, Eduardo & Oliveira, Mateus Dubiela & Aguiar, Marco Aurélio Schmitz de, 2015. "Scheduling pumpoff operations in onshore oilfields under electric-power constraints," European Journal of Operational Research, Elsevier, vol. 247(3), pages 945-956.
  • Handle: RePEc:eee:ejores:v:247:y:2015:i:3:p:945-956
    DOI: 10.1016/j.ejor.2015.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715004968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    2. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    3. Juan Pablo Vielma & Shabbir Ahmed & George Nemhauser, 2010. "Mixed-Integer Models for Nonseparable Piecewise-Linear Optimization: Unifying Framework and Extensions," Operations Research, INFORMS, vol. 58(2), pages 303-315, April.
    4. Silva, Thiago Lima & Camponogara, Eduardo, 2014. "A computational analysis of multidimensional piecewise-linear models with applications to oil production optimization," European Journal of Operational Research, Elsevier, vol. 232(3), pages 630-642.
    5. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    6. Camponogara, Eduardo & Nakashima, Paulo H.R., 2006. "Solving a gas-lift optimization problem by dynamic programming," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1220-1246, October.
    7. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    2. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    3. Klose, Andreas & Gortz, Simon, 2007. "A branch-and-price algorithm for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1109-1125, June.
    4. Zhu, Wenbin & Huang, Weili & Lim, Andrew, 2012. "A prototype column generation strategy for the multiple container loading problem," European Journal of Operational Research, Elsevier, vol. 223(1), pages 27-39.
    5. Paul A. Chircop & Timothy J. Surendonk & Menkes H. L. van den Briel & Toby Walsh, 2022. "On routing and scheduling a fleet of resource-constrained vessels to provide ongoing continuous patrol coverage," Annals of Operations Research, Springer, vol. 312(2), pages 723-760, May.
    6. Daniel Villeneuve & Jacques Desrosiers & Marco Lübbecke & François Soumis, 2005. "On Compact Formulations for Integer Programs Solved by Column Generation," Annals of Operations Research, Springer, vol. 139(1), pages 375-388, October.
    7. Osman Ou{g}uz, 2002. "Generalized Column Generation for Linear Programming," Management Science, INFORMS, vol. 48(3), pages 444-452, March.
    8. Timo Gschwind & Stefan Irnich, 2016. "Dual Inequalities for Stabilized Column Generation Revisited," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 175-194, February.
    9. Fırat, M. & Briskorn, D. & Laugier, A., 2016. "A Branch-and-Price algorithm for stable workforce assignments with hierarchical skills," European Journal of Operational Research, Elsevier, vol. 251(2), pages 676-685.
    10. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    11. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    12. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    13. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    14. Irvin Lustig & Patricia Randall & Robert Randall, 2021. "Formulation Matters: Reciprocating Integer Programming for Birchbox Product Assortment," Interfaces, INFORMS, vol. 51(5), pages 347-360, September.
    15. Issmail Elhallaoui & Daniel Villeneuve & François Soumis & Guy Desaulniers, 2005. "Dynamic Aggregation of Set-Partitioning Constraints in Column Generation," Operations Research, INFORMS, vol. 53(4), pages 632-645, August.
    16. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    17. Sebastian Kraul & Markus Seizinger & Jens O. Brunner, 2023. "Machine Learning–Supported Prediction of Dual Variables for the Cutting Stock Problem with an Application in Stabilized Column Generation," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 692-709, May.
    18. Jeroen Beliën & Erik Demeulemeester, 2007. "On the trade-off between staff-decomposed and activity-decomposed column generation for a staff scheduling problem," Annals of Operations Research, Springer, vol. 155(1), pages 143-166, November.
    19. Codas, Andrés & Camponogara, Eduardo, 2012. "Mixed-integer linear optimization for optimal lift-gas allocation with well-separator routing," European Journal of Operational Research, Elsevier, vol. 217(1), pages 222-231.
    20. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:247:y:2015:i:3:p:945-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.