IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v49y2015i2p355-368.html
   My bibliography  Save this article

A Branch-and-Cut-and-Price Algorithm for the Two-Echelon Capacitated Vehicle Routing Problem

Author

Listed:
  • Fernando Afonso Santos

    (Universidade Federal de Itajubá, Campus Itabira, Itabira, Minas Gerais 35903-087, Brazil)

  • Geraldo Robson Mateus

    (Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-921, Brazil)

  • Alexandre Salles da Cunha

    (Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-921, Brazil)

Abstract

In this paper, we introduce a branch-and-cut-and-price algorithm for the two-echelon capacitated vehicle routing problem. The algorithm relies on a reformulation based on q -routes that combines two important features. First, it overcomes symmetry issues observed in a formulation coming from a previous study of the problem. Second, it is strengthened with several classes of valid inequalities. As a result, the branch-and-cut-and-price implementation compares favorably with previous exact solution approaches for the problem—namely, two branch-and-price algorithms and a branch-and-cut method. Overall, 10 new optimality certificates and 8 new best upper bounds are provided in this study. New best lower bounds are also presented for all instances in the hardest test set from the literature.

Suggested Citation

  • Fernando Afonso Santos & Geraldo Robson Mateus & Alexandre Salles da Cunha, 2015. "A Branch-and-Cut-and-Price Algorithm for the Two-Echelon Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 355-368, May.
  • Handle: RePEc:inm:ortrsc:v:49:y:2015:i:2:p:355-368
    DOI: 10.1287/trsc.2013.0500
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2013.0500
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2013.0500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marshall L. Fisher, 1994. "Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees," Operations Research, INFORMS, vol. 42(4), pages 626-642, August.
    2. Gouveia, Luis, 1995. "A result on projection for the vehicle routing ptoblem," European Journal of Operational Research, Elsevier, vol. 85(3), pages 610-624, September.
    3. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    4. Manfred W. Padberg & M. R. Rao, 1982. "Odd Minimum Cut-Sets and b -Matchings," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 67-80, February.
    5. Jaeheon Jung & Kamlesh Mathur, 2007. "An Efficient Heuristic Algorithm for a Two-Echelon Joint Inventory and Routing Problem," Transportation Science, INFORMS, vol. 41(1), pages 55-73, February.
    6. Stefan Ropke & Jean-François Cordeau, 2009. "Branch and Cut and Price for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 43(3), pages 267-286, August.
    7. Campos, V. & Corberan, A. & Mota, E., 1991. "Polyhedral results for a vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 52(1), pages 75-85, May.
    8. Araque, J. & Hall, L. & Magnanti, T., 1990. "Capacitated trees, capacitated routing, and associated polyhedra," LIDAM Discussion Papers CORE 1990061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    10. Araque, J., 1990. "Lots of combs of different sizes for vehicle routing," LIDAM Discussion Papers CORE 1990074, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    12. Lisa K. Fleischer & Adam N. Letchford & Andrea Lodi, 2006. "Polynomial-Time Separation of a Superclass of Simple Comb Inequalities," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 696-713, November.
    13. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    14. Guido Perboli & Roberto Tadei & Daniele Vigo, 2011. "The Two-Echelon Capacitated Vehicle Routing Problem: Models and Math-Based Heuristics," Transportation Science, INFORMS, vol. 45(3), pages 364-380, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvarez, Jose A. Lopez & Buijs, Paul & Deluster, Rogier & Coelho, Leandro C. & Ursavas, Evrim, 2020. "Strategic and operational decision-making in expanding supply chains for LNG as a fuel," Omega, Elsevier, vol. 97(C).
    2. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    3. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    4. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    5. Kangzhou Wang & Shulin Lan & Yingxue Zhao, 2017. "A genetic-algorithm-based approach to the two-echelon capacitated vehicle routing problem with stochastic demands in logistics service," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1409-1421, November.
    6. Huang, Yixiao & Savelsbergh, Martin & Zhao, Lei, 2018. "Designing logistics systems for home delivery in densely populated urban areas," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 95-125.
    7. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    8. Mingyuan Wei & Hao Guan & Yunhan Liu & Benhe Gao & Canrong Zhang, 2020. "Production, Replenishment and Inventory Policies for Perishable Products in a Two-Echelon Distribution Network," Sustainability, MDPI, vol. 12(11), pages 1-26, June.
    9. Ziyuan Liu & Zhi Li & Weiming Chen & Yunpu Zhao & Hanxun Yue & Zhenzhen Wu, 2020. "Path Optimization of Medical Waste Transport Routes in the Emergent Public Health Event of COVID-19: A Hybrid Optimization Algorithm Based on the Immune–Ant Colony Algorithm," IJERPH, MDPI, vol. 17(16), pages 1-18, August.
    10. Li, Jiliu & Xu, Min & Sun, Peng, 2022. "Two-echelon capacitated vehicle routing problem with grouping constraints and simultaneous pickup and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 261-291.
    11. Xianlong Ge & Yuanzhi Jin, 2023. "Sustainability Oriented Vehicle Route Planning Based on Time-Dependent Arc Travel Durations," Sustainability, MDPI, vol. 15(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.
    2. Roberto Baldacci & Paolo Toth & Daniele Vigo, 2010. "Exact algorithms for routing problems under vehicle capacity constraints," Annals of Operations Research, Springer, vol. 175(1), pages 213-245, March.
    3. Li, Jiliu & Xu, Min & Sun, Peng, 2022. "Two-echelon capacitated vehicle routing problem with grouping constraints and simultaneous pickup and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 261-291.
    4. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    5. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    6. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    7. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    8. Letchford, Adam N. & Salazar-González, Juan-José, 2019. "The Capacitated Vehicle Routing Problem: Stronger bounds in pseudo-polynomial time," European Journal of Operational Research, Elsevier, vol. 272(1), pages 24-31.
    9. Sungwon Lee & Taesung Hwang, 2018. "Estimating Emissions from Regional Freight Delivery under Different Urban Development Scenarios," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    10. Karaoğlan, İsmail & Erdoğan, Güneş & Koç, Çağrı, 2018. "The Multi-Vehicle Probabilistic Covering Tour Problem," European Journal of Operational Research, Elsevier, vol. 271(1), pages 278-287.
    11. Keyong Lin & S. Nurmaya Musa & Hwa Jen Yap, 2022. "Vehicle Routing Optimization for Pandemic Containment: A Systematic Review on Applications and Solution Approaches," Sustainability, MDPI, vol. 14(4), pages 1-27, February.
    12. Allahyari, Somayeh & Salari, Majid & Vigo, Daniele, 2015. "A hybrid metaheuristic algorithm for the multi-depot covering tour vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 242(3), pages 756-768.
    13. Renaud Masson & Anna Trentini & Fabien Lehuédé & Nicolas Malhéné & Olivier Péton & Houda Tlahig, 2017. "Optimization of a city logistics transportation system with mixed passengers and goods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 81-109, March.
    14. Lagos, Felipe & Pereira, Jordi, 2024. "Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 312(1), pages 70-91.
    15. Groß, Patrick-Oliver & Ehmke, Jan Fabian & Mattfeld, Dirk Christian, 2020. "Interval travel times for robust synchronization in city logistics vehicle routing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    16. Drexl, Michael, 2013. "Applications of the vehicle routing problem with trailers and transshipments," European Journal of Operational Research, Elsevier, vol. 227(2), pages 275-283.
    17. Shih-Che Lo & Ying-Lin Chuang, 2023. "Vehicle Routing Optimization with Cross-Docking Based on an Artificial Immune System in Logistics Management," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    18. Gouveia, Luis, 1995. "A result on projection for the vehicle routing ptoblem," European Journal of Operational Research, Elsevier, vol. 85(3), pages 610-624, September.
    19. Sandra Ulrich Ngueveu & Christian Prins & Roberto Wolfler Calvo, 2013. "New Lower Bounds and Exact Method for the m -PVRP," Transportation Science, INFORMS, vol. 47(1), pages 38-52, February.
    20. Z. Al Chami & H. Manier & M.-A. Manier, 2019. "A lexicographic approach for the bi-objective selective pickup and delivery problem with time windows and paired demands," Annals of Operations Research, Springer, vol. 273(1), pages 237-255, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:49:y:2015:i:2:p:355-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.