IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v19y2019i3d10.1007_s11067-018-9437-7.html
   My bibliography  Save this article

Multi-depot Two-Echelon Fuel Minimizing Routing Problem with Heterogeneous Fleets: Model and Heuristic

Author

Listed:
  • Surendra Reddy Kancharla

    (Indian Institute of Technology Madras)

  • Gitakrishnan Ramadurai

    (Indian Institute of Technology Madras)

Abstract

We formulate the two-echelon routing problem considering multiple depots and heterogeneous fleets. Our study (a) presents a Mixed Integer Linear Programming (MILP) formulation with load-dependent fuel minimization objective, (b) uses driving cycles to represent speed variations along a path, (c) allows the vehicles to return to any depot/satellite, and (d) conserves the total number of vehicles at each depot/satellite. We call the problem a Multi-Depot Two-Echelon Fuel Minimizing Routing Problem (MD2E-FMRP). Prior studies assumed there is a fixed number of vehicles available at each satellite/depot, whereas we allow different number of vehicles of each vehicle type at each satellite and depot. Our formulation relaxes several unrealistic assumptions in existing two-echelon formulations and hence has greater practical application. Despite the relaxation of constraints, the running time of our model is comparable to existing formulations. Gurobi optimizer is used to find a better upper bound for up to 56 node instances within a given time limit of 10,000s. We also propose an Adaptive Large Neighborhood Search (ALNS) based heuristic solution technique that outperformed Gurobi in all the tested instances of MD2E-FMRP. We observe an average saving of 13.11% in fuel consumption by minimizing fuel consumed instead of minimizing distance. In general, adapting heterogeneous fleets results in fuel savings and consequently lower emissions compared to using a homogeneous fleet.

Suggested Citation

  • Surendra Reddy Kancharla & Gitakrishnan Ramadurai, 2019. "Multi-depot Two-Echelon Fuel Minimizing Routing Problem with Heterogeneous Fleets: Model and Heuristic," Networks and Spatial Economics, Springer, vol. 19(3), pages 969-1005, September.
  • Handle: RePEc:kap:netspa:v:19:y:2019:i:3:d:10.1007_s11067-018-9437-7
    DOI: 10.1007/s11067-018-9437-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11067-018-9437-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-018-9437-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Hunkar Toyoglu & Oya Karasan & Bahar Kara, 2012. "A New Formulation Approach for Location-Routing Problems," Networks and Spatial Economics, Springer, vol. 12(4), pages 635-659, December.
    3. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    4. Renaud, Jacques & Boctor, Fayez F., 2002. "A sweep-based algorithm for the fleet size and mix vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 140(3), pages 618-628, August.
    5. Jacobsen, S. K. & Madsen, O. B. G., 1980. "A comparative study of heuristics for a two-level routing-location problem," European Journal of Operational Research, Elsevier, vol. 5(6), pages 378-387, December.
    6. Sahin, Bahri & Yilmaz, Huseyin & Ust, Yasin & Guneri, Ali Fuat & Gulsun, BahadIr, 2009. "An approach for analysing transportation costs and a case study," European Journal of Operational Research, Elsevier, vol. 193(1), pages 1-11, February.
    7. Franceschetti, Anna & Honhon, Dorothée & Van Woensel, Tom & Bektaş, Tolga & Laporte, Gilbert, 2013. "The time-dependent pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 265-293.
    8. Abdulkader, M.M.S. & Gajpal, Yuvraj & ElMekkawy, Tarek Y., 2018. "Vehicle routing problem in omni-channel retailing distribution systems," International Journal of Production Economics, Elsevier, vol. 196(C), pages 43-55.
    9. Guido Perboli & Roberto Tadei & Daniele Vigo, 2011. "The Two-Echelon Capacitated Vehicle Routing Problem: Models and Math-Based Heuristics," Transportation Science, INFORMS, vol. 45(3), pages 364-380, August.
    10. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    11. Mads Jepsen & Simon Spoorendonk & Stefan Ropke, 2013. "A Branch-and-Cut Algorithm for the Symmetric Two-Echelon Capacitated Vehicle Routing Problem," Transportation Science, INFORMS, vol. 47(1), pages 23-37, February.
    12. David Escuín & Carlos Millán & Emilio Larrodé, 2012. "Modelization of Time-Dependent Urban Freight Problems by Using a Multiple Number of Distribution Centers," Networks and Spatial Economics, Springer, vol. 12(3), pages 321-336, September.
    13. Barth, Matthew & Younglove, Theodore & Scora, George, 2005. "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt67f0v3zf, Institute of Transportation Studies, UC Berkeley.
    14. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2012. "An adaptive large neighborhood search heuristic for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 346-359.
    15. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "The bi-objective Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 232(3), pages 464-478.
    16. Seyedmehdi Mirmohammadsadeghi & Shamsuddin Ahmed, 2015. "Memetic Heuristic Approach for Solving Truck and Trailer Routing Problems with Stochastic Demands and Time Windows," Networks and Spatial Economics, Springer, vol. 15(4), pages 1093-1115, December.
    17. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Bektaş, Tolga, 2015. "The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 366-378.
    18. Tuzun, Dilek & Burke, Laura I., 1999. "A two-phase tabu search approach to the location routing problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 87-99, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Rui & Xu, Jiuping & Ke, Ruimin & Zeng, Ziqiang & Wang, Yinhai, 2020. "Carbon pricing initiatives-based bi-level pollution routing problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 203-217.
    2. Zhongxin Zhou & Minghu Ha & Hao Hu & Hongguang Ma, 2021. "Half Open Multi-Depot Heterogeneous Vehicle Routing Problem for Hazardous Materials Transportation," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    3. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    4. Yue Lu & Maoxiang Lang & Xueqiao Yu & Shiqi Li, 2019. "A Sustainable Multimodal Transport System: The Two-Echelon Location-Routing Problem with Consolidation in the Euro–China Expressway," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    5. Garside, Annisa Kesy & Ahmad, Robiah & Muhtazaruddin, Mohd Nabil Bin, 2024. "A recent review of solution approaches for green vehicle routing problem and its variants," Operations Research Perspectives, Elsevier, vol. 12(C).
    6. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    7. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2021. "Two-echelon vehicle routing problem with satellite bi-synchronization," European Journal of Operational Research, Elsevier, vol. 288(3), pages 775-793.
    8. Erfan Babaee Tirkolaee & Alireza Goli & Abbas Mardani, 2023. "A novel two-echelon hierarchical location-allocation-routing optimization for green energy-efficient logistics systems," Annals of Operations Research, Springer, vol. 324(1), pages 795-823, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    2. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "The impact of depot location, fleet composition and routing on emissions in city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 81-102.
    3. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    4. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    5. Qiu, Rui & Xu, Jiuping & Ke, Ruimin & Zeng, Ziqiang & Wang, Yinhai, 2020. "Carbon pricing initiatives-based bi-level pollution routing problem," European Journal of Operational Research, Elsevier, vol. 286(1), pages 203-217.
    6. Huang, Yixiao & Zhao, Lei & Van Woensel, Tom & Gross, Jean-Philippe, 2017. "Time-dependent vehicle routing problem with path flexibility," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 169-195.
    7. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    8. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Bektaş, Tolga, 2015. "The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 366-378.
    9. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    10. Kramer, Raphael & Subramanian, Anand & Vidal, Thibaut & Cabral, Lucídio dos Anjos F., 2015. "A matheuristic approach for the Pollution-Routing Problem," European Journal of Operational Research, Elsevier, vol. 243(2), pages 523-539.
    11. Brunner, Carlos & Giesen, Ricardo & Klapp, Mathias A. & Flórez-Calderón, Luz, 2021. "Vehicle routing problem with steep roads," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 1-17.
    12. Arjun Paul & Ravi Shankar Kumar & Chayanika Rout & Adrijit Goswami, 2021. "A bi-objective two-echelon pollution routing problem with simultaneous pickup and delivery under multiple time windows constraint," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 962-993, December.
    13. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
    14. Jie, Wanchen & Yang, Jun & Zhang, Min & Huang, Yongxi, 2019. "The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology," European Journal of Operational Research, Elsevier, vol. 272(3), pages 879-904.
    15. Turkensteen, Marcel, 2017. "The accuracy of carbon emission and fuel consumption computations in green vehicle routing," European Journal of Operational Research, Elsevier, vol. 262(2), pages 647-659.
    16. Demir, Emrah & Bektaş, Tolga & Laporte, Gilbert, 2014. "A review of recent research on green road freight transportation," European Journal of Operational Research, Elsevier, vol. 237(3), pages 775-793.
    17. Çağrı Koç, 2019. "Analysis of vehicle emissions in location-routing problem," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 1-33, March.
    18. Ozgur Kabadurmus & Mehmet S. Erdogan, 2023. "A green vehicle routing problem with multi-depot, multi-tour, heterogeneous fleet and split deliveries: a mathematical model and heuristic approach," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-29, April.
    19. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    20. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:19:y:2019:i:3:d:10.1007_s11067-018-9437-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.