IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i4p1030-1045.html
   My bibliography  Save this article

Statistical Analysis with Little's Law

Author

Listed:
  • Song-Hee Kim

    (Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027)

  • Ward Whitt

    (Department of Industrial Engineering and Operations Research, Columbia University, New York, New York 10027,)

Abstract

The theory supporting Little's Law (L=(lambda)W) is now well developed, applying to both limits of averages and expected values of stationary distributions, but applications of Little's Law with actual system data involve measurements over a finite-time interval, which are neither of these. We advocate taking a statistical approach with such measurements. We investigate how estimates of L and (lambda) can be used to estimate W when the waiting times are not observed. We advocate estimating confidence intervals. Given a single sample-path segment, we suggest estimating confidence intervals using the method of batch means, as is often done in stochastic simulation output analysis. We show how to estimate and remove bias due to interval edge effects when the system does not begin and end empty. We illustrate the methods with data from a call center and simulation experiments.

Suggested Citation

  • Song-Hee Kim & Ward Whitt, 2013. "Statistical Analysis with Little's Law," Operations Research, INFORMS, vol. 61(4), pages 1030-1045, August.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:4:p:1030-1045
    DOI: 10.1287/opre.2013.1193
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2013.1193
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2013.1193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Gamze Tokol & James R. Wilson, 2007. "Overlapping Variance Estimators for Simulation," Operations Research, INFORMS, vol. 55(6), pages 1090-1103, December.
    2. Otis B. Jennings & Avishai Mandelbaum & William A. Massey & Ward Whitt, 1996. "Server Staffing to Meet Time-Varying Demand," Management Science, INFORMS, vol. 42(10), pages 1383-1394, October.
    3. Christos Alexopoulos & Nilay Tanık Argon & David Goldsman & Natalie M. Steiger & Gamze Tokol & James R. Wilson, 2007. "Efficient Computation of Overlapping Variance Estimators for Simulation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 314-327, August.
    4. Ali Tafazzoli & James Wilson, 2011. "Skart: A skewness- and autoregression-adjusted batch-means procedure for simulation analysis," IISE Transactions, Taylor & Francis Journals, vol. 43(2), pages 110-128.
    5. Stephen G. Eick & William A. Massey & Ward Whitt, 1993. "Mt/G/\infty Queues with Sinusoidal Arrival Rates," Management Science, INFORMS, vol. 39(2), pages 241-252, February.
    6. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ward Whitt & Xiaopei Zhang, 2019. "Periodic Little’s Law," Operations Research, INFORMS, vol. 67(1), pages 267-280, January.
    2. Ward Whitt & Xiaopei Zhang, 2019. "A central-limit-theorem version of the periodic Little’s law," Queueing Systems: Theory and Applications, Springer, vol. 91(1), pages 15-47, February.
    3. Rosa Hendijani, 2021. "Analytical thinking, Little's Law understanding, and stock‐flow performance: two empirical studies," System Dynamics Review, System Dynamics Society, vol. 37(2-3), pages 99-125, April.
    4. Tsiligianni, Christiana & Tsiligiannis, Aristeides & Tsiliyannis, Christos, 2023. "A stochastic inventory model of COVID-19 and robust, real-time identification of carriers at large and infection rate via asymptotic laws," European Journal of Operational Research, Elsevier, vol. 304(1), pages 42-56.
    5. Azam Asanjarani & Yoni Nazarathy & Peter Taylor, 2021. "A survey of parameter and state estimation in queues," Queueing Systems: Theory and Applications, Springer, vol. 97(1), pages 39-80, February.
    6. Aleksander Król & Małgorzata Król, 2019. "A Stochastic Simulation Model for the Optimization of the Taxi Management System," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    7. Ward Whitt, 2016. "Heavy-traffic fluid limits for periodic infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 111-143, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.
    2. Zohar Feldman & Avishai Mandelbaum & William A. Massey & Ward Whitt, 2008. "Staffing of Time-Varying Queues to Achieve Time-Stable Performance," Management Science, INFORMS, vol. 54(2), pages 324-338, February.
    3. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    4. Ward Whitt, 2007. "What you should know about queueing models to set staffing requirements in service systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 476-484, August.
    5. Merve Bodur & James R. Luedtke, 2017. "Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service-System Staffing and Scheduling with Arrival Rate Uncertainty," Management Science, INFORMS, vol. 63(7), pages 2073-2091, July.
    6. Ward Whitt & Jingtong Zhao, 2017. "Many‐server loss models with non‐poisson time‐varying arrivals," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 177-202, April.
    7. Ward Whitt, 2006. "Staffing a Call Center with Uncertain Arrival Rate and Absenteeism," Production and Operations Management, Production and Operations Management Society, vol. 15(1), pages 88-102, March.
    8. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    9. Opher Baron & Joseph Milner, 2009. "Staffing to Maximize Profit for Call Centers with Alternate Service-Level Agreements," Operations Research, INFORMS, vol. 57(3), pages 685-700, June.
    10. Yang, Feng & Liu, Jingang, 2012. "Simulation-based transfer function modeling for transient analysis of general queueing systems," European Journal of Operational Research, Elsevier, vol. 223(1), pages 150-166.
    11. Barış Ata & Xiaoshan Peng, 2020. "An Optimal Callback Policy for General Arrival Processes: A Pathwise Analysis," Operations Research, INFORMS, vol. 68(2), pages 327-347, March.
    12. Avramidis, Athanassios N. & Chan, Wyean & Gendreau, Michel & L'Ecuyer, Pierre & Pisacane, Ornella, 2010. "Optimizing daily agent scheduling in a multiskill call center," European Journal of Operational Research, Elsevier, vol. 200(3), pages 822-832, February.
    13. Eugene Furman & Alex Cressman & Saeha Shin & Alexey Kuznetsov & Fahad Razak & Amol Verma & Adam Diamant, 2021. "Prediction of personal protective equipment use in hospitals during COVID-19," Health Care Management Science, Springer, vol. 24(2), pages 439-453, June.
    14. Jerome Niyirora & Jamol Pender, 2016. "Optimal staffing in nonstationary service centers with constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(8), pages 615-630, December.
    15. Meterelliyoz, Melike & Alexopoulos, Christos & Goldsman, David, 2012. "Folded overlapping variance estimators for simulation," European Journal of Operational Research, Elsevier, vol. 220(1), pages 135-146.
    16. Achal Bassamboo & Ramandeep S. Randhawa & Assaf Zeevi, 2010. "Capacity Sizing Under Parameter Uncertainty: Safety Staffing Principles Revisited," Management Science, INFORMS, vol. 56(10), pages 1668-1686, October.
    17. Ekin, Tahir & Aktekin, Tevfik, 2021. "Decision making under uncertain and dependent system rates in service systems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 335-348.
    18. Liu, Yunan & Whitt, Ward, 2017. "Stabilizing performance in a service system with time-varying arrivals and customer feedback," European Journal of Operational Research, Elsevier, vol. 256(2), pages 473-486.
    19. Ward Whitt, 2016. "Heavy-traffic fluid limits for periodic infinite-server queues," Queueing Systems: Theory and Applications, Springer, vol. 84(1), pages 111-143, October.
    20. De Munck, Thomas & Chevalier, Philippe & Tancrez, Jean-Sébastien, 2023. "Managing priorities on on-demand service platforms with waiting time differentiation," International Journal of Production Economics, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:4:p:1030-1045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.