IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v20y2022i1d10.1007_s10288-021-00500-2.html
   My bibliography  Save this article

Challenges and opportunities in crowdsourced delivery planning and operations

Author

Listed:
  • Martin W.P Savelsbergh

    (Georgia Institute of Technology)

  • Marlin W. Ulmer

    (Otto-von-Guericke Universität Magdeburg)

Abstract

How to best deliver goods to consumers has been a logistics question since time immemorial. However, almost all traditional delivery models involved a form of company employees, whether employees of the company manufacturing the goods or whether employees of the company transporting the goods. With the growth of the gig economy, however, a new model not involving company employees has emerged: relying on crowdsourced delivery. Crowdsourced delivery involves enlisting individuals to deliver goods and interacting with these individuals using the internet. In crowdsourced delivery, the interaction with the individuals typically occurs through a platform. Importantly, the crowdsourced couriers are not employed by the platform and this has fundamentally changed the planning and execution of the delivery of goods: the delivery capacity is no longer under (full) control of the company managing the delivery. We present the challenges this introduces, review how the research community has proposed to handle some of these challenges, and elaborate on the challenges that have not yet been addressed.

Suggested Citation

  • Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
  • Handle: RePEc:spr:aqjoor:v:20:y:2022:i:1:d:10.1007_s10288-021-00500-2
    DOI: 10.1007/s10288-021-00500-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-021-00500-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-021-00500-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Behrend, Moritz & Meisel, Frank, 2018. "The integration of item-sharing and crowdshipping: Can collaborative consumption be pushed by delivering through the crowd?," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 227-243.
    2. Lafkihi, Mariam & Pan, Shenle & Ballot, Eric, 2019. "Freight transportation service procurement: A literature review and future research opportunities in omnichannel E-commerce," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 348-365.
    3. Marlin Ulmer & Martin Savelsbergh, 2020. "Workforce Scheduling in the Era of Crowdsourced Delivery," Transportation Science, INFORMS, vol. 54(4), pages 1113-1133, July.
    4. Mofidi, Seyed Shahab & Pazour, Jennifer A., 2019. "When is it beneficial to provide freelance suppliers with choice? A hierarchical approach for peer-to-peer logistics platforms," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 1-23.
    5. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    6. Junyu Cao & Mariana Olvera-Cravioto & Zuo-Jun (Max) Shen, 2020. "Last-Mile Shared Delivery: A Discrete Sequential Packing Approach," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1466-1497, November.
    7. Warren B. Powell, 1996. "A Stochastic Formulation of the Dynamic Assignment Problem, with an Application to Truckload Motor Carriers," Transportation Science, INFORMS, vol. 30(3), pages 195-219, August.
    8. Miguel Andres Figliozzi & Hani S. Mahmassani & Patrick Jaillet, 2007. "Pricing in Dynamic Vehicle Routing Problems," Transportation Science, INFORMS, vol. 41(3), pages 302-318, August.
    9. Hongyan Dai & Peng Liu, 2020. "Workforce planning for O2O delivery systems with crowdsourced drivers," Annals of Operations Research, Springer, vol. 291(1), pages 219-245, August.
    10. Ozlem Ergun & Gultekin Kuyzu & Martin Savelsbergh, 2007. "Reducing Truckload Transportation Costs Through Collaboration," Transportation Science, INFORMS, vol. 41(2), pages 206-221, May.
    11. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Yi, Wen, 2021. "Crowdsourcing mode evaluation for parcel delivery service platforms," International Journal of Production Economics, Elsevier, vol. 235(C).
    12. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    13. Mariam Lafkihi & Shenle Pan & Eric Ballot, 2019. "Freight transportation service procurement: A literature review and future research opportunities in omnichannel E-commerce," Post-Print hal-02086154, HAL.
    14. Le, Tho V. & Ukkusuri, Satish V. & Xue, Jiawei & Van Woensel, Tom, 2021. "Designing pricing and compensation schemes by integrating matching and routing models for crowd-shipping systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    15. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.
    16. Archetti, Claudia & Savelsbergh, Martin & Speranza, M. Grazia, 2016. "The Vehicle Routing Problem with Occasional Drivers," European Journal of Operational Research, Elsevier, vol. 254(2), pages 472-480.
    17. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    18. Alireza Ermagun & Ali Shamshiripour & Amanda Stathopoulos, 0. "Performance analysis of crowd-shipping in urban and suburban areas," Transportation, Springer, vol. 0, pages 1-31.
    19. Powell, Warren B., 1987. "An operational planning model for the dynamic vehicle allocation problem with uncertain demands," Transportation Research Part B: Methodological, Elsevier, vol. 21(3), pages 217-232, June.
    20. Iman Dayarian & Martin Savelsbergh, 2020. "Crowdshipping and Same‐day Delivery: Employing In‐store Customers to Deliver Online Orders," Production and Operations Management, Production and Operations Management Society, vol. 29(9), pages 2153-2174, September.
    21. Tsai, Mei-Ting & Saphores, Jean-Daniel & Regan, Amelia, 2011. "Valuation of freight transportation contracts under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 920-932.
    22. Allahviranloo, Mahdieh & Baghestani, Amirhossein, 2019. "A dynamic crowdshipping model and daily travel behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 175-190.
    23. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    24. Shen, Hui & Lin, Jane, 2020. "Investigation of crowdshipping delivery trip production with real-world data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    25. Alireza Ermagun & Ali Shamshiripour & Amanda Stathopoulos, 2020. "Performance analysis of crowd-shipping in urban and suburban areas," Transportation, Springer, vol. 47(4), pages 1955-1985, August.
    26. Wang, Yuan & Zhang, Dongxiang & Liu, Qing & Shen, Fumin & Lee, Loo Hay, 2016. "Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 279-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2024. "Compensation guarantees in crowdsourced delivery: Impact on platform and driver welfare," Omega, Elsevier, vol. 122(C).
    2. Yang, Dingtong & Hyland, Michael F. & Jayakrishnan, R., 2024. "Tackling the crowdsourced shared-trip delivery problem at scale with a novel decomposition heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    3. Wang, Haibo & Alidaee, Bahram, 2023. "White-glove service delivery: A quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    4. Ausseil, Rosemonde & Ulmer, Marlin W. & Pazour, Jennifer A., 2024. "Online acceptance probability approximation in peer-to-peer transportation," Omega, Elsevier, vol. 123(C).
    5. Alexander Wyrowski & Nils Boysen & Dirk Briskorn & Stefan Schwerdfeger, 2024. "Public transport crowdshipping: moving shipments among parcel lockers located at public transport stations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 873-907, September.
    6. Srinivas R. Chakravarthy & Alexander N. Dudin & Sergey A. Dudin & Olga S. Dudina, 2023. "Queueing System with Potential for Recruiting Secondary Servers," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    7. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    8. Zehtabian, Shohre & Larsen, Christian & Wøhlk, Sanne, 2022. "Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting," European Journal of Operational Research, Elsevier, vol. 303(2), pages 616-632.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mancini, Simona & Gansterer, Margaretha, 2022. "Bundle generation for last-mile delivery with occasional drivers," Omega, Elsevier, vol. 108(C).
    2. Yang, Dingtong & Hyland, Michael F. & Jayakrishnan, R., 2024. "Tackling the crowdsourced shared-trip delivery problem at scale with a novel decomposition heuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    3. Boysen, Nils & Emde, Simon & Schwerdfeger, Stefan, 2022. "Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand," European Journal of Operational Research, Elsevier, vol. 296(2), pages 539-556.
    4. Ghaderi, Hadi & Zhang, Lele & Tsai, Pei-Wei & Woo, Jihoon, 2022. "Crowdsourced last-mile delivery with parcel lockers," International Journal of Production Economics, Elsevier, vol. 251(C).
    5. Ausseil, Rosemonde & Ulmer, Marlin W. & Pazour, Jennifer A., 2024. "Online acceptance probability approximation in peer-to-peer transportation," Omega, Elsevier, vol. 123(C).
    6. Bathke, Henrik & Hartmann, Evi, 2021. "Accepting a crowdsourced delivery - A choice-based conjoint analysis," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 65-95, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    7. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    8. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    9. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2024. "Compensation guarantees in crowdsourced delivery: Impact on platform and driver welfare," Omega, Elsevier, vol. 122(C).
    10. Wang, Haibo & Alidaee, Bahram, 2023. "White-glove service delivery: A quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    11. Wang, Li & Xu, Min & Qin, Hu, 2023. "Joint optimization of parcel allocation and crowd routing for crowdsourced last-mile delivery," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 111-135.
    12. Wang, Yi-Jia & Wang, Yue & Huang, George Q. & Lin, Ciyun, 2024. "Public acceptance of crowdsourced delivery from a customer perspective," European Journal of Operational Research, Elsevier, vol. 317(3), pages 793-805.
    13. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.
    14. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    15. Marlin Ulmer & Martin Savelsbergh, 2020. "Workforce Scheduling in the Era of Crowdsourced Delivery," Transportation Science, INFORMS, vol. 54(4), pages 1113-1133, July.
    16. Stokkink, Patrick & Cordeau, Jean-François & Geroliminis, Nikolas, 2024. "A column and row generation approach to the crowd-shipping problem with transfers," Omega, Elsevier, vol. 128(C).
    17. Mousavi, Kianoush & Bodur, Merve & Cevik, Mucahit & Roorda, Matthew J., 2024. "Approximate dynamic programming for pickup and delivery problem with crowd-shipping," Transportation Research Part B: Methodological, Elsevier, vol. 187(C).
    18. Zhang, Huili & Luo, Kelin & Xu, Yao & Xu, Yinfeng & Tong, Weitian, 2022. "Online crowdsourced truck delivery using historical information," European Journal of Operational Research, Elsevier, vol. 301(2), pages 486-501.
    19. Zehtabian, Shohre & Larsen, Christian & Wøhlk, Sanne, 2022. "Estimation of the arrival time of deliveries by occasional drivers in a crowd-shipping setting," European Journal of Operational Research, Elsevier, vol. 303(2), pages 616-632.
    20. Alireza Ermagun & Ali Shamshiripour & Amanda Stathopoulos, 2020. "Performance analysis of crowd-shipping in urban and suburban areas," Transportation, Springer, vol. 47(4), pages 1955-1985, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:20:y:2022:i:1:d:10.1007_s10288-021-00500-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.