IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v57y2019i21p6648-6664.html
   My bibliography  Save this article

A Constraint Programming model for food processing industry: a case for an ice cream processing facility

Author

Listed:
  • Ezra Wari
  • Weihang Zhu

Abstract

This paper presents a Constraint Programming (CP) scheduling model for an ice cream processing facility. CP is a mathematical optimisation tool for solving problems either for optimality (for small-size problems) or good quality solutions (for large-size problems). For practical scheduling problems, a single CP solution model can be used to optimise daily production or production horizon extending for months. The proposed model minimises a makespan objective and consists of various processing interval and sequence variables and a number of production constraints for a case from a food processing industry. Its performance was compared to a Mixed Integer Linear Programming (MILP) model from the literature for optimality, speed, and competence using the partial capacity of the production facility of the case study. Furthermore, the model was tested using different product demand sizes for the full capacity of the facility. The results demonstrate both the effectiveness, flexibility, and speed of the CP models, especially for large-scale models. As an alternative to MILP, CP models can provide a reasonable balance between optimality and computation speed for large problems.

Suggested Citation

  • Ezra Wari & Weihang Zhu, 2019. "A Constraint Programming model for food processing industry: a case for an ice cream processing facility," International Journal of Production Research, Taylor & Francis Journals, vol. 57(21), pages 6648-6664, November.
  • Handle: RePEc:taf:tprsxx:v:57:y:2019:i:21:p:6648-6664
    DOI: 10.1080/00207543.2019.1571250
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2019.1571250
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2019.1571250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maheshwari, Pratik & Kamble, Sachin & Belhadi, Amine & Venkatesh, Mani & Abedin, Mohammad Zoynul, 2023. "Digital twin-driven real-time planning, monitoring, and controlling in food supply chains," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    2. Müller, David & Müller, Marcus G. & Kress, Dominik & Pesch, Erwin, 2022. "An algorithm selection approach for the flexible job shop scheduling problem: Choosing constraint programming solvers through machine learning," European Journal of Operational Research, Elsevier, vol. 302(3), pages 874-891.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:57:y:2019:i:21:p:6648-6664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.