IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-99304-1_2.html
   My bibliography  Save this book chapter

Evaluating the Quality of Radiotherapy Treatment Plans for Prostate Cancer

In: Multiple Criteria Decision Making and Aiding

Author

Listed:
  • Emma Stubington

    (Lancaster University)

  • Matthias Ehrgott

    (Lancaster University Management School)

  • Glyn Shentall

    (Royal Preston Hospital)

  • Omid Nohadani

    (Northwestern University)

Abstract

External beam radiation therapy is a common treatment method for cancer. Radiotherapy is planned with the aim to achieve conflicting goals: while a sufficiently high dose of radiation is necessary for tumour control, a low dose of radiation is desirable to avoid complications in normal, healthy, tissue. These goals are encoded in clinical protocols and a plan that does not meet the criteria set out in the protocol may have to be re-optimised using a trial and error process. To support the planning process, it is therefore important to evaluate the quality of treatment plans in order to recognise plans that will benefit from such re-optimisation and distinguish them from those for which this is unlikely to be the case. In this chapter we present a case study of evaluating the quality of prostate cancer treatment plans based on data collected from Rosemere Cancer Centre at the Royal Preston Hospital in the UK. We use Principal Component Analysis for data reduction, i.e., to select the most relevant data from the entire set available for each patient. We then apply Data Envelopment Analysis to assess the quality of individual plans. Each plan is compared against the entire set of plans to identify those that could realistically be improved. We further enhance this procedure with simulation techniques to account for uncertainties in the data for treatment plans. The proposed approach to plan evaluation provides a tool to support radiotherapy treatment planners in their task to determine the best possible radiotherapy treatment for cancer patients. With its combination of DEA, PCA and simulation, it allows focusing on the most significant determinants of plan quality, consideration of trade-offs between conflicting planning goals and incorporation of uncertainty in treatment data.

Suggested Citation

  • Emma Stubington & Matthias Ehrgott & Glyn Shentall & Omid Nohadani, 2019. "Evaluating the Quality of Radiotherapy Treatment Plans for Prostate Cancer," International Series in Operations Research & Management Science, in: Sandra Huber & Martin Josef Geiger & Adiel Teixeira de Almeida (ed.), Multiple Criteria Decision Making and Aiding, pages 41-66, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-99304-1_2
    DOI: 10.1007/978-3-319-99304-1_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dias, Luis C. & Dias, Joana & Ventura, Tiago & Rocha, Humberto & Ferreira, BrĂ­gida & Khouri, Leila & Lopes, Maria do Carmo, 2022. "Learning target-based preferences through additive models: An application in radiotherapy treatment planning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 270-279.
    2. Raith, Andrea & Ehrgott, Matthias & Fauzi, Fariza & Lin, Kuan-Min & Macann, Andrew & Rouse, Paul & Simpson, John, 2022. "Integrating Data Envelopment Analysis into radiotherapy treatment planning for head and neck cancer patients," European Journal of Operational Research, Elsevier, vol. 296(1), pages 289-303.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-99304-1_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.